データ・アナリティクス入門

仮説とデータで描く地方創生のヒント

仮説の見方は? ビジネスにおける仮説思考について、まず複数の仮説を同時に考え、それぞれに網羅性を持たせることが重要だと学びました。仮説を検証するためには、適切なデータを取得して比較する必要があり、その際には何を比較指標とするのかを意図的に選ぶことが求められます。たとえば、残業時間の増加要因として故障対応の増加が疑われる場合、単に故障件数だけでなく、1件あたりの対応時間も合わせて評価することが必要です。 情報収集の意図は? また、データ収集では意味のある対象から意見を聴取し、反論を排除するために必要な情報まで踏み込むことが重要です。さらに、実際のビジネス現場では、3Cや4Pといった分析の枠組みを活用して具体的な仮説を立てることで、解像度が高まり、個々の仕事に対する検証マインドや説得力が向上するほか、ビジネスのスピードや行動の制度が改善されることが分かりました。 過疎地域の課題は? 一方、過疎地域への移住促進においては、雇用の創出が鍵となります。人口が5000人以下の市町村では、産業の集積が不十分なため、相応の所得を得られる雇用を生み出すには、行政が主導して仕事づくりを進める必要があります。こうした雇用創出の一策として、総務省が制度化した仕組みがありますが、現状では本県で十分な成果が上がっていません。 事業展開のヒントは? この原因を明らかにするために、どのような業務に何人派遣しているか、また仕事の切り出し方についてデータを収集し、市町村担当者と情報を共有することが今後の事業展開のヒントになると感じました。現在、管内の1市町村で既に事業が展開されており、協力体制の可能性を検討しています。また、他の市町村でも類似の事業設立が検討されているため、たとえば損益分岐点を意識した事業計画の作成方法をケーススタディとして示し、過疎地域の課題解決につなげる取り組みを進めたいと考えています。

デザイン思考入門

問いで開く新たな学び

インタビュー設計はなぜ? 顧客のニーズを発掘するため、「参加型デザイン」「インタビュー設計」「ワークショップ設計」を学びましたが、現状の業務では時間やリソースの制約があるため、「インタビュー設計」が最も適していると感じました。イシューを明確にした上で、そのイシューに基づいた質問を作成するために労力をかける必要がありますが、顧客に過度な負荷をかけずに実践できる手法だと思います。 どうして質問を工夫? また、質問を検討する際には、オープンエンド形式で詳細な問いを投げ、回答に影響を与えることなく実情を引き出す工夫が必要です。そのため、現行のサービスに関する質問だけでなく、そのサービスが使われる状況や日々の業務の流れまで把握できるような質問項目を作りたいと考えています。 なぜ非機能要件に注目? さらに、インタビューの準備を進める中で、機能要件だけでなく非機能要件にも焦点を当てることで、潜在的な問題を掘り下げられる可能性に気づきました。たとえば、ある業務において印刷が必要な場合、ありがちな解決策は印刷スピードを上げたり、印刷枚数を減らすといった機能的な対策ですが、本質的な問いとして、そもそもその印刷が必要なのかという疑問を持つことも大切だと感じました。このように、インタビューを通じて共感を得るためには、しっかりとした準備と工夫が不可欠です。 ヒト中心の考えはどう? 最後に、私が重要だと感じたのは、物事を「ヒト」を中心に捉え、絶対的な正解がないこと、ルールに縛られすぎずに柔軟に考える姿勢が必要だという点です。システム全体に目を向けると、その枠組み内でしか考えられない恐れがあります。そこで、「ヒト」の行動に注目することにより、問題の本質に近づける可能性があると感じました。ただし、その視点も自分のバイアスに偏らないよう、常に疑問を持ち、広い視野で捉えていくことが大切だと思います。

データ・アナリティクス入門

問題解決へのアプローチを学ぶ

原因をどのように探る? 原因を探究することについて学びました。問題の原因を明らかにするためには、その問題に至るまでのプロセスを分解して考えるアプローチがあります。複数の解決策を用意し、それらを判断基準の重要度に基づいて根拠をもって絞り込むことが重要です。 データ分析の精度を高める方法は? 具体的なステップを踏んでデータを分析し、問題解決の精度を高める方法や、仮説を試しながらデータを収集し、より良い解決策に繋げる方法を学びました。これら両方のアプローチを組み合わせることで、データ分析の精度を一層高めることができます。例えば、「自分の残業時間」について考えてみると良い練習になります。 A/Bテストはどのように進める? 【A/Bテストについて】 A/Bテストとは、二つの施策を試し、比較するテストです。目標の設定から始まり、改善ポイントの仮説設計、実行までのステップを踏みます。優位なデータ数が集まるまで行い、その期間内で検証を行うことが重要です。目的と仮説を明確にし、シンプルで低コストかつ少ないリスクで運用できるようにすることが求められます。 残業問題をどのように解決する? 試しに「自身の残業時間」の多さについて考えてみました。棚卸できる業務をその場しのぎで抱えていたり、時間割やスケジュールの把握が疎かになっていたりと、整理すべき項目はいくつか見つかりました。複数の解決策を導くためには、まだ整理しなければならない複合的な原因が残っていますが、「有耶無耶」な部分を明確にすることで解決策が見えてきました。 今後の課題解決のステップは? 今後は、メンバー個別の面談や少人数のミーティングを通じて、現在の課題を一緒に洗い出し、原因を突き止めてみることを実践したいと考えています。そして、仮説を立て、複数の解決案をもって組織としての意思決定や問題解決に繋げていきます。

戦略思考入門

賢い選択で効率化を目指す!

捨てる理由は何だろう? 今回のWEEKで学んだことは、「捨てる」という行為の重要性でした。特に、目的と数値的根拠(特に利益)を持って選別することが重要だと感じました。WEEKを通して感じたのは、物事の整理・分析をし、大局的な視点で差別化した戦略を立てることで、目的をもって選択(捨てる)するサイクルが大切だということです。 効果をどう見極める? ビジネスでは、投資対効果の高いものだけを選び続けるのが理想です。しかし、最初からすべて効果の高いものを作り出すのは難しいと実感しています。限られたリソースの中で新しい施策を試しながら、投資対効果の低いものを捨て、高いものを残すというサイクルを繰り返すべきだと明確になりました。何を目的に捨てるのかをしっかり考え、一度選択したことでも目的をもってやめることが重要だと感じました。 選別基準は何だろう? WEEK内の課題では、実際に企業へのアプローチ方法を考える設問を通じて、何を基準に取捨選択するかを理解しました。これまでは漠然とした時間や工数で判断していましたが、利益率で優先順位を判断することが重要だと学びました. 集約のポイントは? 仕事の集約に際しては、効率性の高い内容を優先的に集約していきたいと思います。また、実行して非効率だと判断した場合は、捨てる選択をする勇気を持つことも心掛けます。さらに、多回数の会議や定例業務を見直し、品質を上げたい業務に集中できるように整えたいと考えています. 効率向上の戦略は? まずは目の前の問題に取り組み、課題解決に活かしていきたいです。高品質化と効率化を実現するため、現時点での課題であるリソース不足に対処します。費用対効果の悪い業務を洗い出し、捨てるかどうかをリストアップし、その上で新たに生み出したリソースをどの業務に集中させるかを選択していきたいと思います.

データ・アナリティクス入門

データ分析で解く業務の課題解決法

データ分析はなぜ有用? データ分析は、問題解決を確実に進めるために非常に有用であると理解しました。ライブ授業では、前提条件が整理されていたため、問題解決のステップである問題箇所の特定や絞り込みが比較的容易でしたが、実際のビジネス現場では、これらのステップが難しく、訓練が必要だと強く感じました。 売上減少はどう解決? 今回のライブ授業では、事業運営における売上減少という問題をデータ分析で解決する演習を行いました。その際の問題解決のステップは、1. Whatで問題を明確にし、2. Whereで問題箇所を絞り込み、3. Whyで原因を分析し、4. Howで解決策を考えるという流れです。 具体分析の進め方は? 具体的には、売上減少という問題を特定し(What)、売上を構成する客単価や客数のデータ分析を通じて問題の所在(Where)を特定しました。その要因を仮説・検証により原因分析(Why)し、次に打ち手を判断・評価する(How)という手順です。分析においては、データに基づいたストーリーを構築することが重要です。比較対象を明確にし、データを加工して必要な情報を可視化することがポイントです。 差異の原因は何? 日常業務でも計画と実績との差異分析を行っていますが、浅はかな要因分析に留まらないように、原因分析を網羅的に行うことが重要だと考えます。また、問題を明確にし、問題箇所を特定し、原因分析し、打ち手を考える一連の手順によって、データ分析が目的化せず、何を主張するための分析なのかを振り返ることができます。 定着はどのように? これらの問題解決のステップを習得し、データ分析を取り入れた一連の流れを月に2回以上実施することで、手法の定着化を図りたいです。特に、問題箇所の特定(Where)に苦手意識がありますが、事例を積み重ねることで対応時間の削減にも取り組みます。

戦略思考入門

戦略で学ぶ!時間と戦うビジネス学

トレードオフとは何か? 戦略における選択や「捨てる」というプロセスを実践する中で、トレードオフの概念について学びました。これは、何かを追求する際に別の何かを犠牲にしなければならないという理論です。この考え方は、ビジネスだけでなく日常生活でも無意識のうちに実践していることで、とても身近に感じられました。 優先順位の付け方の重要性 ビジネスの場面では、特に時間という限られた資源に直面することが多く、必然的に何かを捨てる選択を迫られます。今回、優先順位の付け方を実践的に学ぶことで、これまで直感に頼っていた判断に客観的な視点を加えることができるようになりました。その結果、判断軸がぶれることなく、問題解決にスピード感を持って取り組むことができると感じました。 スタック・イン・ザ・ミドルのリスク また、コスト・リーダーシップ戦略と差別化戦略というトレードオフの関係にある要素を両立しようとすると、「スタック・イン・ザ・ミドル」に陥るリスクがあることも学びました。 効果的なコンテンツ企画とは? 今後、国際戦略の一環としてイン・アウトバウンドを促進するために、新たなコンテンツ企画を進める予定です。その際、効果的な戦略を考えるとともに、工数と集客効果のバランスにも配慮したいと思います。具体的には、インタビュー企画を検討していますが、広報活動においてはあまり凝った制作をせず、限られた時間内で魅力的なコンテンツを制作することを心掛けています。 媒体選定と効果検証のポイント まずは、どの媒体にコンテンツを掲載するのかを決め、その効率性を考慮します。過去の閲覧数やフォロワー数を参考に、より良い結果を得られる媒体に集中して時間を使い、その後、仮説が正しかったか検証します。そして、予期しない結果が得られた場合には、次回のコンテンツ企画に向けて修正案を練る予定です。

データ・アナリティクス入門

気づきを得た!ABテストでSNSフォロワー倍増作戦

ABテストの学びを深めるには? 問題の原因を探るためのポイントと、適切な解決策を決定するための手法である「ABテスト」について学びました。 まず、問題の原因を探るためのポイントとして、以下の二つが挙げられます。 1. プロセスに分解すること。 2. 解決策を検討する際には、複数の選択肢を洗い出し、その中から根拠をもって絞り込むこと。 ABテストの手法はどう実行する? 次に、ABテストの手法についてです。ABテストでは、できる限り条件を揃えることが重要です(例えば時間帯や曜日)。具体的なステップは次の通りです。 1. 目的を設定する。 2. 改善ポイントの仮説設計を行う(ABテストの立案)。 3. 実行する。 4. 結果の検証と打ち手の決定を行う。 SNSフォロワー増加策の提案 直近の課題として、所属組織の公式SNSアカウントのフォロワー数増加策にABテストを活用したいと考えました。 具体的な解決案は以下の通りです。 - 目的の設定:フォロワー4000(現在2000) - 検証項目:フォロワーの属性、いいね回数、再投稿回数、テキストの文体、メディアの有無 - 仮説:文体が固くとっつきにくいのではないか - 解決策:ABテストを行い、1週間程度、「ですます調」と「だである調」で投稿の文体をテストする この課題解決案を所属部署に提案します。 問題解決の手順は? 最後に、問題解決の4ステップを説明します。 1. What:問題の明確化→同業他社に比べてフォロワー数が増えない 2. Where:問題箇所の特定→投稿への反応が少ない(いいね、再投稿) 3. Why:原因の分析→投稿頻度が少ない?文体が固い? 4. How:解決策の立案→ABテストで文体を変えて投稿してみる 以上、学んだ内容と計画した解決策について共有させていただきます。

データ・アナリティクス入門

データに基づく問題解決法を学んだ充実の時間

分析の基本を理解するには? 講座全体を通して学んだことのポイントは以下の通りです。 まず、分析についてです。分析とは、比較することと同義です。そして、問題解決のプロセスにおいては「What→Where→Why→How」の順序で進めることが重要です。平均値を見る際には、そのばらつきにも注意を払いましょう。対策を決定する際には固定的にせず、柔軟に対応することが求められます。また、生存者バイアスに影響されないように注意し、生存者と非生存者の両方に目を向け、データの分布全体を分析する必要があります。結果を他人にわかりやすく伝えるためには、データのビジュアル化が有効です。 戦略策定で役立つ方法は? 次に、下半期の戦略策定です。クライアントの下半期戦略を作成する際に、講座で学んだ分析のフレームワークを活用することができます。 データをどう活かすか? さらに、分析結果の資料への落とし込みについてです。クライアントの意思決定を支援することを目的として、データの見せ方に工夫を凝らします。 データ分析の効率化を目指すには? データ分析のやり方の向上も重要です。AIなどのツールをうまく活用することで、精度の高い分析を短時間で実施します。必要最低限の情報をもとに素早く答えを出して実行する。このサイクルを多く回すことで、最短で最大の効果を生み出すことが可能です。 効果的なデータ伝達法は? 最後に、データ分析結果の伝え方についてです。対峙する相手は数値分析を本職としていないことが多いので、単なる数値の伝達だけでは不十分です。データを可視化し、クライアントの課題を踏まえたフォーマットに変換します。クライアントが知りたいのはビジネス上のインパクトです。そのため、ビジュアルで見せたり、ビジネス言語で表現して、一目で理解できるようにすることが重要です。

クリティカルシンキング入門

カメラが教える視点の妙技

講義の洞察は何を示す? 講義では、カメラの例えを通して「視点・視座・視野」という三つの視の重要性に気づかされました。視点はカメラのピントのように一点をとらえるものですが、視座はカメラの位置や高さ、視野はレンズの画角にあたります。物事を一点だけで捉えると、思考が偏りやすくなるという点が印象的でした。 具体と抽象はどう理解すべき? また、具体と抽象のキャッチボールが、自分自身や他者を客体化して客観的に眺める力につながるという考え方も学びました。このプロセスを通じて、コミュニケーション力や問題解決能力を向上させるためには、まず自分を疑うことが必要であると実感しました。 プロデューサーとしての課題は? 映像制作会社のプロデューサーに求められるスキルは、①顧客獲得に向けた段階的な情報整理、②企画や提案、見積もりの正確さ、③スムーズな製作進行の三点に整理できると考えています。これまでの業務では、迅速な対応を重視するあまり、情報整理の確認やプロセスの見直しが十分でなかったため、顧客とのコミュニケーションや進行面で調整に時間を要する場面がありました。 業務全体を見渡す秘訣は? こうした経験から、業務の質を高めるためには、作業に没頭する前に一度全体を見渡す視点の重要性を改めて感じました。今後は、企画・提案・見積もりに際しては事前確認項目を明確にし、製作進行においては判断理由や優先順位を言語化するなど、全体を俯瞰しながら進めることを意識していきたいと思います。上司とのセッションを通じて、自分の思考プロセスを整理し、スピードと正確性の両立を目指してプロデューサーとして着実に成長していく所存です。 また、映像業界以外の経験がない私ですが、他業種での試行錯誤や失敗をどのように仕事の判断基準へ反映させているのか、その話もぜひお聞きしたいと感じています。

クリティカルシンキング入門

イシューを見極め仕事を効率化するコツ

イシュー特定の重要性を再確認 イシューを特定することの重要性は認識していましたが、時折特定しきれないまま進行していることがあります。また、意識しないとイシューからズレてしまうことが多いため、常にズレていないかを確認しながら進めていくことが大切だと感じました。 具体的には以下の点を今後意識して習慣にしていきたいです: - 問いの形にする - 具体的に考える - 一貫して抑え続ける 問いの重要性とは? さらに、相手の話を聴くときには、「問い」なのか「問いを解決するプラン」なのかを整理しながら聴くことが重要だと学びました。これをコーチングにも活かし、学んだステップで考え行動できるよう促したいと思います。 慌ただしい日々の中で、今この時間「何について話をしたいか」=「問い」が明確だと、前提も整いやすく、効率よく仕事を進められると感じました。 収益構造の変化に適応するには? この一年で収益構造が大きく変化しているため、従来の方法では利益を生み出すことが難しくなっています。売上を伸ばし無駄を省くためのイシューを特定し、チームメンバーと解決方法を協議しながら進める際に、今回の学びを活かしたいと思いました。 クリティカルシンキングを活用する これから来期の優先事項を決めプランを作成する際に、今回学んだクリティカルシンキングを活かしたいです。特に「問いを立てる」ことが重要だと実感しました: - 問いから始める:現状を整理し問いを立てることを意識する - 問いを残す:問いを意識し続けるために見える化し、プラン進行中に目的に立ち返ることができるようにする - 問いを共有する:組織全体で方向性を共有するために、視覚や言葉で伝わる資料を作成し、メンバーに合わせて伝え方を工夫する 以上の点を踏まえ、今回の学びを仕事に活かしていきたいと思います。

クリティカルシンキング入門

イシューで会議をもっと成果にする方法

最初の問いは何? 今何を考えるべきか、最初に答えを出すべき問い(イシュー)を明確にしてから考えることが大切です。イシューは具体的な問いの形にし、共有することで同じ問題について皆で考えることができます。問いが間違っていると、いくら考えても良い案にはなりません。考えている最中や話している最中にも、適宜イシューを思い出し意識し続けるべきです。 会議で何を伝える? 業務の進捗を共有するための会議や、業務で何か動いてもらうための会議、社内で試験的に進めているアイデアソン、今後の業務計画の作成などの場面で、イシューの概念を活用できます。複数人による意思決定の場や、一人で次に何をすべきか考える時にも役立つでしょう。 会議の目的は? 会議を行う際には、まず会議の目的を明確にし、その日のテーマや出すべき答えをしっかり共有してから開始します。会議の途中でも、適宜イシューを振り返る時間を設けることが大切です。試験的に開始されたアイデアソンに参加する際も、何のために実施するのか、何を考えるべきなのか、ゴールはどこかをしっかり共有してから始めるよう、関係者としっかりコミュニケーションをとりたいです。 なぜ新規事業か? 新規事業提案のために、課題とその解決方法を考える時には、まず「なぜ新規事業を提案するのか」という点を考えるべきだと思いました。何となく考え始めるのではなく、活動の目的をしっかり意識することから始めたいと思います。提案が通った際も、前進する際には初心を忘れず、イシューを意識し続けます。 解決策はどう? 課題解決方法を考える時には、課題をしっかり分解し、複数の視点から捉え、対応策を考えたいです。チームで進めることになる場合は、同じ目標を持って進むためにも、課題や向かうべき方向をしっかりと共有することが重要です。

データ・アナリティクス入門

仮説習得が拓く未来の学び

仮説はどう活かす? スピードや精度を向上させるためには、分析の初期段階で仮説を立てることが重要だと学びました。結論に向けた仮説と問題解決のための仮説という二種類の仮説があり、それぞれ目的や時間軸に合わせて使い分けることが求められます。 フレームワークってどう活かす? また、3Cや4Pなどのフレームワークを活用することで、思考が整理され、仮説形成が容易になると感じました。仮説に沿って必要なデータを抽出し、場合によっては新たにデータを取得するプロセスは、効果的な分析の基本と言えます。数字で見えにくい効果も、可能な限り数値として示すことで説得力が増し、合理的な判断材料となります。 数字で信頼はどう? 具体的には、コンバージョンレートなどの数値計算により、直感だけに頼らず理論的な判断が可能となります。フレームワークを用いることで、業務のスピード感と精度が向上した経験もあり、反対意見を含めた多面的な情報収集が仮説検証の信頼性を高めると実感しました。 新機能はどう検証する? さらに、新機能をリリースする際には、3Cの観点から分析して優先度を明確化したり、施策ごとの「影響度×実行難易度」を評価することで、迅速な判断を下しています。ユーザーインタビューにおいては、どの層のユーザーがどのフェーズで不満を感じているかを仮説から検証し、具体的なデータに基づいて問題点を抽出する工夫も行っています。 仮説と判断はどう連携する? 週に一度、仮説をもとに業務課題を整理し、必要なデータを洗い出すワークシートを作成するなど、日常的な業務の中でも「仮説→データ→判断」の流れを徹底しています。毎月、ユーザーアンケートやインタビュー結果の分析から改善案を提案し、社内でのレビューにてその流れを共有することで、施策の精度や実行力の向上に努めています。
AIコーチング導線バナー

「時間 × 解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right