データ・アナリティクス入門

問題解決への仮説立案と検証の実践記

問題発見にどのフレームワークを適用すべき? 問題発見のステップとして、まずWhereのフェーズでどこに問題があるかを考えます。この際、仮説を立て、その仮説が成り立つのかを検証するためにデータを集めます。仮説を立てるときには、フレームワークも有効です。代表的なフレームワークとして、3Cや4Pがあります。 3Cは「顧客」「競合」「自社」の三要素、4Pは「Product(製品)」「Price(価格)」「Place(流通)」「Promotion(広告・販売促進)」を指します。これらのフレームワークを使って仮説を立てると、どこに問題があるのかが明確に見えやすくなります。 4Pを用いた仮説とは? 例えば、今回学んだ例では4Pを使いました。製品については「大学生にとって魅力的な講座ではないのでは?」、価格については「大学生にとって高すぎるのでは?」、流通については「立地が悪いのでは?」、広告については「大学生に認知されていないのでは?」と考えることができました。 仮説検証に必要なデータの収集方法 仮説には結論の仮説と問題解決の仮説があります。これらを過去、現在、将来の時間軸で考えることも重要です。仮説を検証するためのデータの集め方として、現存するデータでの検証方法や新しいデータを集める方法も考慮します。 見逃しやすい観点を見直すには? 現在、分析を行いながら、起こっている現象に対して、いくつかの仮説を立てています。しかし、振り返ると今回学んだフレームワークに当てはめた場合、観点が漏れていることに気づきました。今回学んだことを活用して改めて考えてみたいと思います。 問題の仮説を具体的に書き出し、その際にはフレームワークを適用します。仮説には必要なデータもセットで書き出し、最低でも四つの仮説を立てます。そして、その仮説が正しいのかを来週までに仮の結論を出しておきます。この仮説と検証のプロセスを他人に説明し、共有していく予定です。

戦略思考入門

時間を最大限に活かす秘訣を学ぶ

優先順位はどう決める? 限りある資源、特に時間をどのように活用するかを考える際には、優先順位を定めて取捨選択を行うことの重要性を再認識しました。これは常に上司からも指摘されることであり、またその上司もさらに上から同じことを指摘されています。「言うは易し行うは難し」と感じる瞬間です。実践演習でも、重要な要素を感じ取ることはできても、実際に各社へのアプローチ方法を考える際にどの切り口が効果的かを考えるのは難しかったです。動画学習で「効用が最大化するポイントを見つける」「重視するスタンスを考える」と説明があったように、模範解答を追求するだけでなく、まずは切り口を決めて考えてみて、そこから修正を繰り返す「トライ&エラー」の方が良いのではないかと感じました。 研修企画はどう活かす? この学びを研修体系の企画業務に活用したいと思います。研修企画では、教育目的、内容、コスト、運用方法など、さまざまな要素があります。事業や職種、拠点によって考え方や優先事項が異なるため、どこを落としどころにするかを考える際に活用できると感じました。例えば、事業別に検討する際、「教育目的・内容・コスト・運用方法」の要素ごとに各事業が何を優先するかをまとめ、全体最適となる案を導き出すことができるのではと考えます。しかし、事業によって考え方が正反対になる場合もあるため、一つの解に限定せず、複数の解決策を模索することも重要だと感じました。 企画はどう進める? 企画を検討する際には、懸念される要素を漏れなく抜き出し、要素ごとに整理する必要があります。まとめた情報をもとに、全体に共通する優先度の高い要素を軸に施策を考えていきます。一方で、優先する要素がまとまらない場合もあるため、検討の際には「妥協できるポイント」を整理することも重要です。譲れない点と、重要だが柔軟に考えられる点を整理しておけば、解が一つにまとまらなくても、より絞り込んだ選択が可能になります。

クリティカルシンキング入門

データで見つける思考の新発見

データ分解で何が見える? 与えられたデータをどのように分解するかによって、見えてくるものが大きく変わることを体感しました。また、グラフに可視化することで、数字だけでは見えない傾向が明確に浮き彫りになることも理解できました。 思考癖に気づく理由は? データを要素別に分解した際、関連しそうなものを安易に結びつけて一つの傾向として捉えてしまう自分の思考の癖に気づきました。本当にその傾向が正しいのかを確認せず、安直に結論を出して解決策を立てるのではなく、その仮説をもとにさらに分解し、複数の切り口から丁寧に検討することが必要だと感じました。具体的には、「who」「when」「where」「how」といった視点から考えることを学びました。 ターゲット分析はどう進む? また、あるホテルでの活動において、ゲストが楽しみながら地球環境や社会に貢献できるようなサービスを考案する際には、ターゲットを定めるだけでなく、既存の客を分析するために今回学んだ切り口が役立つと感じました。例えば、「who」年代別、属性、「where」出身国、「what」目的、「when」時間帯、「why」選択理由、「how」交通手段や情報源などです。 サービス評価のタイミングは? さらに、カスタマーサービスを分析する際にはプロセスの分解を行い、滞在のどのタイミングで満足度が高いのか、また低いのかを理解し、サービス改善に努めたいと思いました。 根拠をもとに提案は? このような視点から考慮することで、事象の解像度が上がり、思いつきでなく根拠をもとにアイディアを提案できると感じます。日々の業務でアイディアを提案する際には、データをどのように分解して仮説を立てたかを説明することが重要だと思いました。また、「事象分解」「変数分解」「プロセス分解」のいずれかの方法が適しているのか、また切り口を5W1Hから考慮するなど、丁寧に思考する癖をつけることが大切だと考えます。

データ・アナリティクス入門

実践で証明!成功へのABテスト術

ABテストはどう実践? ABテストの存在を初めて知ったとき、施策を同時進行で実施しながらも、60~70%程度の成功を見込んで行動し、その結果をもとに対策を絞り込むという考え方に納得しました。職種上、普段は使う機会がないものの、今後の選択肢として意識しておきたいと思います。ただし、ABテストを実施する前には、しっかりとした検証のステップを踏む必要があることは言うまでもありません。 論理検証はどう? また、分析においては、クイズのような抜けや漏れを防ぐために、段階を追って論理的に検証を進めることが重要だと感じました。 試行で得た自信は? 実際に、昨年のこの時期、自身の残業対応策を試行し、修正が必要だと感じた箇所を2、3ピックアップして対応を行いました。具体的には、チェックリストの活用や同一項目の一連化(モジュール化)を実施し、もやもやとしていた問題を解消することができました。これにより、自分でもできるという自信がついたのは、ある意味でABテスト的な試みだったと思います。問題解決は原因と結果の因果関係を追及することが重要ですが、定石通りの対応も身につけつつ、今回の成功例を対策の一つとして活かしていきたいと考えています。 実践は何に効く? いずれにしても、実践することの大切さを改めて実感しました。残業時間の短縮に成功した経験をもとに、他の改善点にも同様のアプローチを適用してみたいです。実践を通じて、得たノウハウや注意点を蓄積しながら、さらなる改善を目指す所存です。 問題はどう解決? 何を改善し、どの問題を解決するのかというテーマ設定自体も重要なカギです。以前、他者からの問いかけがきっかけで、これまで諦めていた問題に挑戦し、結果的に成果を得た経験があります。この経験から、まずは取り組みやすく成果が出やすい問題を選び、ステップを踏んで実験・検証を繰り返すことが、問題解決への確実な道であると感じました。

リーダーシップ・キャリアビジョン入門

フィードバックでチームを変える方法

リーダーの姿勢は? 実行した結果を振り返るにあたり、メンバーへの仕事の委任ではリーダーのスタンスが重要です。プロセスが正しいか、状況が変わっているか、当初の想定通りの結果が出ているか、また不測の事態に備えられているかを確認することが大切です。 評価のポイントは? フィードバックにおける効果的なポイントは、自己評価や言語化、事実に基づく評価の明確化です。良い点と悪い点の両方をセットで振り返ることが重要です。また、X理論では人は責任を回避したがるため、ノルマやペナルティで対応しますが、Y理論では責任をとろうとするため、高い目標や称賛、報酬での対応が求められます。動機付けと衛生理論を用いてエンゲージメントを向上させることが重要です。 フィードバックのタイミングは? モチベーションのスイッチは一人ひとり異なるため、その時のその人を良く観察し、相手に応じたフィードバックや励ましが必要です。時間がない中でもこまめにフィードバックを行うことが次の仕事での改善やミスの減少にもつながります。その場その場でのフィードバックを通じて、相手をよく見て実践していきたいと考えています。 エンゲージメント対策は? 特に弊社の過酷な営業現場でのエンゲージメント向上が議論になるなか、動機付けと衛生理論を用いて対応を整理することが重要です。どちらか一方の改善では解決しない現状では、両面での対応策の検討が必要です。モチベーションの高い人とそうでない人では効果を発揮する方法が全く異なるため、バランスの取れた対応策を再整理したいと思います。 すぐに実施すべきは? 現在、自チームではミスが発生しているため、今回学んだことを活かし、フィードバックを後回しにせずにすぐに実施したいと考えています。営業現場でのエンゲージメント向上について議論が進む中で、動機付け・衛生理論に基づき、バランスの良い対応策が考えられているかを再確認したいです。

データ・アナリティクス入門

仮説構築のフレームワークで実力アップ

仮説構築で何を優先すべき? 仮説構築のポイントについて学んだことは、以下の通りです。 まず、仮説構築では複数の仮説を出すことが重要です。3Cや4Pといったフレームワークを活用し、網羅性を持たせることが求められます。決め打ちにしない姿勢も大切です。 次に、仮説を絞り込むための基準としては、具体的なデータや根拠が必要です。たとえば、SNSのプロモーションが弱いと判断する場合、その根拠を明確にする必要があります。 どのデータを用いるべき? データ取得や計測前には、指標の絞り込みが重要です。何を比較すれば仮説が立証されるのかを確認します。例えば、故障件数ではなく、1件あたりの対応時間を指標とすることが有効です。 また、比較対象のデータも集める必要があります。Aが正しいというだけでなく、BやCを否定するデータも必要です。これにより、より説得力が増します。 仮説検証の鍵とは? 仮説には「結論の仮説」と「問題解決の仮説」があり、それぞれの使い分けと違いを意識することが重要です。問題解決の仮説では、社内のシステム切り替えにおいて複数の製品候補の中から1つを選ぶ際、網羅性のある原因究明と問題箇所の特定が求められます。A製品が良いというデータだけでなく、他の製品(B, C)がダメというデータも揃えることで、Aの比較優位性を証明することができます。 フレームワーク選択の重要性 仮説検証のシミュレーションでは、まず仮説の洗い出しを行います。3Cや4Pのフレームワークが適用できるかどうかを検証し、適していない場合は他のフレームワークを検討します。 最後に、データ検証の洗い出しでは、取得可能なデータの確認と、どの指標が計測・取得すべきデータなのかを特定します。これにより、仮説の検証がスムーズに進むでしょう。 以上のポイントを踏まえて、仮説構築と検証のプロセスを実践していくことが大切だと感じました。

データ・アナリティクス入門

仮説思考で未来を拓く!

仮説のメリットは何ですか? 「仮説」とは、ある論点に対する仮の答えのことです。この仮説を用いることで、説得力の向上、問題意識の高まり、スピードアップ、行動の精度向上といったメリットがあります。仮説は目的に応じて分類され、さらに時間の経過を考慮して整理されます。例えば、過去の問題を解決する方法として仮説を立てることができます。 正しい仮説の見方は? 仮説を立てる際は、目の前の数字だけにとらわれずに俯瞰してみることが重要です。複数の仮説を決め打ちせずに立て、網羅性を持たせるためにさまざまな切り口を考慮します。また、都合のよいデータだけに頼らず、反論を排除するまでの検証が求められます。 仮説技法のコツは? 仮説を立てるテクニックとして、「なぜ」を繰り返して知識を広めたり、別の視点や時系列で考えることが挙げられます。また、ラフな仮説を作る際には、常識を疑い、新しい情報と組み合わせ、発想を止めないことが大切です。 リーダーはどう実践すべき? リーダーの役割として、仮説を検証するプロセスを習慣化するためには、率先垂範し、仮説と検証方法を常に考えることが重要です。また、質問を使ってコーチングを行い、チーム内での役割分担によるブレインストーミングやディスカッションを推進します。 新仮説はどう生まれる? 創造的な仮説を考えるためには、ビジネス内外の組み合わせや否定的な問いを投げかけると良いでしょう。そして、仮説、データ分析、検証方法をセットで考え、それをチームで共有することが求められます。 どう自己を再確認? 最後に、パッションを高めるための自問を言語化し、自分の生きがいやパフォーマンスを再確認することも重要です。これには、自分の目標を再確認し、現在の状況に対する考えを深めることが含まれます。こうしたプロセスを通じて、自身の成長とチームの成功を目指します。

データ・アナリティクス入門

問題解決へのアプローチを学ぶ

原因をどのように探る? 原因を探究することについて学びました。問題の原因を明らかにするためには、その問題に至るまでのプロセスを分解して考えるアプローチがあります。複数の解決策を用意し、それらを判断基準の重要度に基づいて根拠をもって絞り込むことが重要です。 データ分析の精度を高める方法は? 具体的なステップを踏んでデータを分析し、問題解決の精度を高める方法や、仮説を試しながらデータを収集し、より良い解決策に繋げる方法を学びました。これら両方のアプローチを組み合わせることで、データ分析の精度を一層高めることができます。例えば、「自分の残業時間」について考えてみると良い練習になります。 A/Bテストはどのように進める? 【A/Bテストについて】 A/Bテストとは、二つの施策を試し、比較するテストです。目標の設定から始まり、改善ポイントの仮説設計、実行までのステップを踏みます。優位なデータ数が集まるまで行い、その期間内で検証を行うことが重要です。目的と仮説を明確にし、シンプルで低コストかつ少ないリスクで運用できるようにすることが求められます。 残業問題をどのように解決する? 試しに「自身の残業時間」の多さについて考えてみました。棚卸できる業務をその場しのぎで抱えていたり、時間割やスケジュールの把握が疎かになっていたりと、整理すべき項目はいくつか見つかりました。複数の解決策を導くためには、まだ整理しなければならない複合的な原因が残っていますが、「有耶無耶」な部分を明確にすることで解決策が見えてきました。 今後の課題解決のステップは? 今後は、メンバー個別の面談や少人数のミーティングを通じて、現在の課題を一緒に洗い出し、原因を突き止めてみることを実践したいと考えています。そして、仮説を立て、複数の解決案をもって組織としての意思決定や問題解決に繋げていきます。

デザイン思考入門

問いで開く新たな学び

インタビュー設計はなぜ? 顧客のニーズを発掘するため、「参加型デザイン」「インタビュー設計」「ワークショップ設計」を学びましたが、現状の業務では時間やリソースの制約があるため、「インタビュー設計」が最も適していると感じました。イシューを明確にした上で、そのイシューに基づいた質問を作成するために労力をかける必要がありますが、顧客に過度な負荷をかけずに実践できる手法だと思います。 どうして質問を工夫? また、質問を検討する際には、オープンエンド形式で詳細な問いを投げ、回答に影響を与えることなく実情を引き出す工夫が必要です。そのため、現行のサービスに関する質問だけでなく、そのサービスが使われる状況や日々の業務の流れまで把握できるような質問項目を作りたいと考えています。 なぜ非機能要件に注目? さらに、インタビューの準備を進める中で、機能要件だけでなく非機能要件にも焦点を当てることで、潜在的な問題を掘り下げられる可能性に気づきました。たとえば、ある業務において印刷が必要な場合、ありがちな解決策は印刷スピードを上げたり、印刷枚数を減らすといった機能的な対策ですが、本質的な問いとして、そもそもその印刷が必要なのかという疑問を持つことも大切だと感じました。このように、インタビューを通じて共感を得るためには、しっかりとした準備と工夫が不可欠です。 ヒト中心の考えはどう? 最後に、私が重要だと感じたのは、物事を「ヒト」を中心に捉え、絶対的な正解がないこと、ルールに縛られすぎずに柔軟に考える姿勢が必要だという点です。システム全体に目を向けると、その枠組み内でしか考えられない恐れがあります。そこで、「ヒト」の行動に注目することにより、問題の本質に近づける可能性があると感じました。ただし、その視点も自分のバイアスに偏らないよう、常に疑問を持ち、広い視野で捉えていくことが大切だと思います。

戦略思考入門

賢い選択で効率化を目指す!

捨てる理由は何だろう? 今回のWEEKで学んだことは、「捨てる」という行為の重要性でした。特に、目的と数値的根拠(特に利益)を持って選別することが重要だと感じました。WEEKを通して感じたのは、物事の整理・分析をし、大局的な視点で差別化した戦略を立てることで、目的をもって選択(捨てる)するサイクルが大切だということです。 効果をどう見極める? ビジネスでは、投資対効果の高いものだけを選び続けるのが理想です。しかし、最初からすべて効果の高いものを作り出すのは難しいと実感しています。限られたリソースの中で新しい施策を試しながら、投資対効果の低いものを捨て、高いものを残すというサイクルを繰り返すべきだと明確になりました。何を目的に捨てるのかをしっかり考え、一度選択したことでも目的をもってやめることが重要だと感じました。 選別基準は何だろう? WEEK内の課題では、実際に企業へのアプローチ方法を考える設問を通じて、何を基準に取捨選択するかを理解しました。これまでは漠然とした時間や工数で判断していましたが、利益率で優先順位を判断することが重要だと学びました. 集約のポイントは? 仕事の集約に際しては、効率性の高い内容を優先的に集約していきたいと思います。また、実行して非効率だと判断した場合は、捨てる選択をする勇気を持つことも心掛けます。さらに、多回数の会議や定例業務を見直し、品質を上げたい業務に集中できるように整えたいと考えています. 効率向上の戦略は? まずは目の前の問題に取り組み、課題解決に活かしていきたいです。高品質化と効率化を実現するため、現時点での課題であるリソース不足に対処します。費用対効果の悪い業務を洗い出し、捨てるかどうかをリストアップし、その上で新たに生み出したリソースをどの業務に集中させるかを選択していきたいと思います.

データ・アナリティクス入門

データ分析で解く業務の課題解決法

データ分析はなぜ有用? データ分析は、問題解決を確実に進めるために非常に有用であると理解しました。ライブ授業では、前提条件が整理されていたため、問題解決のステップである問題箇所の特定や絞り込みが比較的容易でしたが、実際のビジネス現場では、これらのステップが難しく、訓練が必要だと強く感じました。 売上減少はどう解決? 今回のライブ授業では、事業運営における売上減少という問題をデータ分析で解決する演習を行いました。その際の問題解決のステップは、1. Whatで問題を明確にし、2. Whereで問題箇所を絞り込み、3. Whyで原因を分析し、4. Howで解決策を考えるという流れです。 具体分析の進め方は? 具体的には、売上減少という問題を特定し(What)、売上を構成する客単価や客数のデータ分析を通じて問題の所在(Where)を特定しました。その要因を仮説・検証により原因分析(Why)し、次に打ち手を判断・評価する(How)という手順です。分析においては、データに基づいたストーリーを構築することが重要です。比較対象を明確にし、データを加工して必要な情報を可視化することがポイントです。 差異の原因は何? 日常業務でも計画と実績との差異分析を行っていますが、浅はかな要因分析に留まらないように、原因分析を網羅的に行うことが重要だと考えます。また、問題を明確にし、問題箇所を特定し、原因分析し、打ち手を考える一連の手順によって、データ分析が目的化せず、何を主張するための分析なのかを振り返ることができます。 定着はどのように? これらの問題解決のステップを習得し、データ分析を取り入れた一連の流れを月に2回以上実施することで、手法の定着化を図りたいです。特に、問題箇所の特定(Where)に苦手意識がありますが、事例を積み重ねることで対応時間の削減にも取り組みます。

戦略思考入門

戦略で学ぶ!時間と戦うビジネス学

トレードオフとは何か? 戦略における選択や「捨てる」というプロセスを実践する中で、トレードオフの概念について学びました。これは、何かを追求する際に別の何かを犠牲にしなければならないという理論です。この考え方は、ビジネスだけでなく日常生活でも無意識のうちに実践していることで、とても身近に感じられました。 優先順位の付け方の重要性 ビジネスの場面では、特に時間という限られた資源に直面することが多く、必然的に何かを捨てる選択を迫られます。今回、優先順位の付け方を実践的に学ぶことで、これまで直感に頼っていた判断に客観的な視点を加えることができるようになりました。その結果、判断軸がぶれることなく、問題解決にスピード感を持って取り組むことができると感じました。 スタック・イン・ザ・ミドルのリスク また、コスト・リーダーシップ戦略と差別化戦略というトレードオフの関係にある要素を両立しようとすると、「スタック・イン・ザ・ミドル」に陥るリスクがあることも学びました。 効果的なコンテンツ企画とは? 今後、国際戦略の一環としてイン・アウトバウンドを促進するために、新たなコンテンツ企画を進める予定です。その際、効果的な戦略を考えるとともに、工数と集客効果のバランスにも配慮したいと思います。具体的には、インタビュー企画を検討していますが、広報活動においてはあまり凝った制作をせず、限られた時間内で魅力的なコンテンツを制作することを心掛けています。 媒体選定と効果検証のポイント まずは、どの媒体にコンテンツを掲載するのかを決め、その効率性を考慮します。過去の閲覧数やフォロワー数を参考に、より良い結果を得られる媒体に集中して時間を使い、その後、仮説が正しかったか検証します。そして、予期しない結果が得られた場合には、次回のコンテンツ企画に向けて修正案を練る予定です。

「時間 × 解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right