データ・アナリティクス入門

気づきを得た!ABテストでSNSフォロワー倍増作戦

ABテストの学びを深めるには? 問題の原因を探るためのポイントと、適切な解決策を決定するための手法である「ABテスト」について学びました。 まず、問題の原因を探るためのポイントとして、以下の二つが挙げられます。 1. プロセスに分解すること。 2. 解決策を検討する際には、複数の選択肢を洗い出し、その中から根拠をもって絞り込むこと。 ABテストの手法はどう実行する? 次に、ABテストの手法についてです。ABテストでは、できる限り条件を揃えることが重要です(例えば時間帯や曜日)。具体的なステップは次の通りです。 1. 目的を設定する。 2. 改善ポイントの仮説設計を行う(ABテストの立案)。 3. 実行する。 4. 結果の検証と打ち手の決定を行う。 SNSフォロワー増加策の提案 直近の課題として、所属組織の公式SNSアカウントのフォロワー数増加策にABテストを活用したいと考えました。 具体的な解決案は以下の通りです。 - 目的の設定:フォロワー4000(現在2000) - 検証項目:フォロワーの属性、いいね回数、再投稿回数、テキストの文体、メディアの有無 - 仮説:文体が固くとっつきにくいのではないか - 解決策:ABテストを行い、1週間程度、「ですます調」と「だである調」で投稿の文体をテストする この課題解決案を所属部署に提案します。 問題解決の手順は? 最後に、問題解決の4ステップを説明します。 1. What:問題の明確化→同業他社に比べてフォロワー数が増えない 2. Where:問題箇所の特定→投稿への反応が少ない(いいね、再投稿) 3. Why:原因の分析→投稿頻度が少ない?文体が固い? 4. How:解決策の立案→ABテストで文体を変えて投稿してみる 以上、学んだ内容と計画した解決策について共有させていただきます。

データ・アナリティクス入門

データに基づく問題解決法を学んだ充実の時間

分析の基本を理解するには? 講座全体を通して学んだことのポイントは以下の通りです。 まず、分析についてです。分析とは、比較することと同義です。そして、問題解決のプロセスにおいては「What→Where→Why→How」の順序で進めることが重要です。平均値を見る際には、そのばらつきにも注意を払いましょう。対策を決定する際には固定的にせず、柔軟に対応することが求められます。また、生存者バイアスに影響されないように注意し、生存者と非生存者の両方に目を向け、データの分布全体を分析する必要があります。結果を他人にわかりやすく伝えるためには、データのビジュアル化が有効です。 戦略策定で役立つ方法は? 次に、下半期の戦略策定です。クライアントの下半期戦略を作成する際に、講座で学んだ分析のフレームワークを活用することができます。 データをどう活かすか? さらに、分析結果の資料への落とし込みについてです。クライアントの意思決定を支援することを目的として、データの見せ方に工夫を凝らします。 データ分析の効率化を目指すには? データ分析のやり方の向上も重要です。AIなどのツールをうまく活用することで、精度の高い分析を短時間で実施します。必要最低限の情報をもとに素早く答えを出して実行する。このサイクルを多く回すことで、最短で最大の効果を生み出すことが可能です。 効果的なデータ伝達法は? 最後に、データ分析結果の伝え方についてです。対峙する相手は数値分析を本職としていないことが多いので、単なる数値の伝達だけでは不十分です。データを可視化し、クライアントの課題を踏まえたフォーマットに変換します。クライアントが知りたいのはビジネス上のインパクトです。そのため、ビジュアルで見せたり、ビジネス言語で表現して、一目で理解できるようにすることが重要です。

クリティカルシンキング入門

イシューを見極め仕事を効率化するコツ

イシュー特定の重要性を再確認 イシューを特定することの重要性は認識していましたが、時折特定しきれないまま進行していることがあります。また、意識しないとイシューからズレてしまうことが多いため、常にズレていないかを確認しながら進めていくことが大切だと感じました。 具体的には以下の点を今後意識して習慣にしていきたいです: - 問いの形にする - 具体的に考える - 一貫して抑え続ける 問いの重要性とは? さらに、相手の話を聴くときには、「問い」なのか「問いを解決するプラン」なのかを整理しながら聴くことが重要だと学びました。これをコーチングにも活かし、学んだステップで考え行動できるよう促したいと思います。 慌ただしい日々の中で、今この時間「何について話をしたいか」=「問い」が明確だと、前提も整いやすく、効率よく仕事を進められると感じました。 収益構造の変化に適応するには? この一年で収益構造が大きく変化しているため、従来の方法では利益を生み出すことが難しくなっています。売上を伸ばし無駄を省くためのイシューを特定し、チームメンバーと解決方法を協議しながら進める際に、今回の学びを活かしたいと思いました。 クリティカルシンキングを活用する これから来期の優先事項を決めプランを作成する際に、今回学んだクリティカルシンキングを活かしたいです。特に「問いを立てる」ことが重要だと実感しました: - 問いから始める:現状を整理し問いを立てることを意識する - 問いを残す:問いを意識し続けるために見える化し、プラン進行中に目的に立ち返ることができるようにする - 問いを共有する:組織全体で方向性を共有するために、視覚や言葉で伝わる資料を作成し、メンバーに合わせて伝え方を工夫する 以上の点を踏まえ、今回の学びを仕事に活かしていきたいと思います。

クリティカルシンキング入門

イシューで会議をもっと成果にする方法

最初の問いは何? 今何を考えるべきか、最初に答えを出すべき問い(イシュー)を明確にしてから考えることが大切です。イシューは具体的な問いの形にし、共有することで同じ問題について皆で考えることができます。問いが間違っていると、いくら考えても良い案にはなりません。考えている最中や話している最中にも、適宜イシューを思い出し意識し続けるべきです。 会議で何を伝える? 業務の進捗を共有するための会議や、業務で何か動いてもらうための会議、社内で試験的に進めているアイデアソン、今後の業務計画の作成などの場面で、イシューの概念を活用できます。複数人による意思決定の場や、一人で次に何をすべきか考える時にも役立つでしょう。 会議の目的は? 会議を行う際には、まず会議の目的を明確にし、その日のテーマや出すべき答えをしっかり共有してから開始します。会議の途中でも、適宜イシューを振り返る時間を設けることが大切です。試験的に開始されたアイデアソンに参加する際も、何のために実施するのか、何を考えるべきなのか、ゴールはどこかをしっかり共有してから始めるよう、関係者としっかりコミュニケーションをとりたいです。 なぜ新規事業か? 新規事業提案のために、課題とその解決方法を考える時には、まず「なぜ新規事業を提案するのか」という点を考えるべきだと思いました。何となく考え始めるのではなく、活動の目的をしっかり意識することから始めたいと思います。提案が通った際も、前進する際には初心を忘れず、イシューを意識し続けます。 解決策はどう? 課題解決方法を考える時には、課題をしっかり分解し、複数の視点から捉え、対応策を考えたいです。チームで進めることになる場合は、同じ目標を持って進むためにも、課題や向かうべき方向をしっかりと共有することが重要です。

データ・アナリティクス入門

仮説習得が拓く未来の学び

仮説はどう活かす? スピードや精度を向上させるためには、分析の初期段階で仮説を立てることが重要だと学びました。結論に向けた仮説と問題解決のための仮説という二種類の仮説があり、それぞれ目的や時間軸に合わせて使い分けることが求められます。 フレームワークってどう活かす? また、3Cや4Pなどのフレームワークを活用することで、思考が整理され、仮説形成が容易になると感じました。仮説に沿って必要なデータを抽出し、場合によっては新たにデータを取得するプロセスは、効果的な分析の基本と言えます。数字で見えにくい効果も、可能な限り数値として示すことで説得力が増し、合理的な判断材料となります。 数字で信頼はどう? 具体的には、コンバージョンレートなどの数値計算により、直感だけに頼らず理論的な判断が可能となります。フレームワークを用いることで、業務のスピード感と精度が向上した経験もあり、反対意見を含めた多面的な情報収集が仮説検証の信頼性を高めると実感しました。 新機能はどう検証する? さらに、新機能をリリースする際には、3Cの観点から分析して優先度を明確化したり、施策ごとの「影響度×実行難易度」を評価することで、迅速な判断を下しています。ユーザーインタビューにおいては、どの層のユーザーがどのフェーズで不満を感じているかを仮説から検証し、具体的なデータに基づいて問題点を抽出する工夫も行っています。 仮説と判断はどう連携する? 週に一度、仮説をもとに業務課題を整理し、必要なデータを洗い出すワークシートを作成するなど、日常的な業務の中でも「仮説→データ→判断」の流れを徹底しています。毎月、ユーザーアンケートやインタビュー結果の分析から改善案を提案し、社内でのレビューにてその流れを共有することで、施策の精度や実行力の向上に努めています。

データ・アナリティクス入門

仮説が織りなす成長のヒント

仮説って何だろう? ビジネス現場における仮説とは、ある論点に対する仮の答えのことです。仮説は「結論の仮説」と「問題解決の仮説」に大別され、時間軸(過去、現在、未来)によりその内容が変化します。問題解決の仮説は課題に取り組む際の原因究明に用いられ、一方、結論の仮説は新規事業などに対する仮の答えとして位置づけられます。 プロセスの流れは? 問題解決のプロセスは4つのステップで整理できます。まず、Whatで問題が何であり、どの程度の問題かを把握します。次にWhereで問題の所在を明らかにし、Whyで問題が発生している原因を追究します。最後にHowでどのような対策が有効かを検討します。複数の仮説を同時に立て、各々の仮説が網羅性を持つよう確認することで、行動のスピードや精度の向上が期待できます。 仮説の活用法は? 私自身はこれまで、Webサイトの行動履歴や売上、KPIなどのデータ分析において、一つの仮説に頼る傾向がありました。今後は最低3つ以上の仮説を立て、上記の4ステップ(What、Where、Why、How)に沿って分析を深め、効率的な問題解決を目指していきたいと考えています。原因追及だけでなく、具体的な対策案を提案できる分析力の向上が目標です。 具体策は何だろう? そのため、以下の取り組みを徹底していきます。まず、仮説立案を強化し、複数の仮説を積極的に検討します。次に、問題解決の4ステップに沿って、各ステップの内容を明確に記録し、問題の全体像を把握します。また、データ分析に必要な技術や知識の学習を継続し、プログラムや統計学などの講座を受講することでスキルアップを図ります。最後に、チーム内でのコミュニケーションを強化し、情報共有や定期的なレビューを通して、原因追及から対策提案まで一貫したアプローチを実現します。

データ・アナリティクス入門

問題解決のプロセスで成果を出す方法

「Why」と「How」の探求は? 問題解決の4つのプロセスのうち、最後の2つである「Why(なぜ)」と「How(どのように)」について考えました。問題の原因を明らかにするために、プロセスを分解し、どの段階に問題があるのかを特定します。そして、解決策を検討する際には、複数の選択肢を洗い出し、それぞれの根拠を持って選定します。 学びをどう生かすか? これまでの学習でも、都合の良いデータばかりを集めないことや、仮説思考で柔軟に考えることの重要性を学んできました。同様に、「How」についても決め打ちせず、複数の選択肢を洗い出し、判断基準を設け、重要度で比較して解決策を選ぶようにします。 A/Bテストの手法とは? また、A/Bテストについても学びました。複数の案を条件を揃えて比較し、評価する手法です。複数の案を実際に試し、反応を確認しながら仮説検証を繰り返して評価します。ある事例では、スピードが重要で3ヶ月も待てないため、同時にランダム表示を選択しましたが、条件を揃える理由に納得しました。 黒字化への挑戦は成功? ちょうど今週、この学びを生かす機会がありました。自部門の数字が黒字にならない原因を考える場面があったのです。これは長年の問題で、まだ解決に至っていません。今週の学びを基に、原因や解決案を決め打ちせず、プロセスに分解し、複数の仮説を立て、根拠となるデータを示しながら解決策に向けた対策を考えていきたいと思います。 残業時間の原因は何か? 最後に、自身の月々の残業がなぜ80時間に達してしまうのかについても、4つのプロセスを用いて考えてみることにします。さらに、Q2で記載した問題の原因について、ある程度仮説を立てています。それらの仮説が正しいかどうか、データを用いて分析することを早速始めてみます。

マーケティング入門

顧客ニーズを探る新視点の発見

顧客ニーズって何だろう? 「何を売るか」を考える際に、まず「顧客のニーズ」を念頭に置くことの重要性を学びました。顧客の「欲求」やそれを解決する手段、さらには顧客が自覚していないニーズについても思案し、提案できるよう努めることが大切です。また、自分が顧客の立場になったつもりで考えることも顧客理解に役立つ方法の一つだと学びました。 具体例はどう活かす? 学びを具体例で深めることができ、特にある事例が大変わかりやすかったです。具体的な例があることで、自社ではどう当てはめるかを想像でき、考えがさらに深まったと感じます。 ペインポイントの意味は? 中でも印象に残ったのは「ペインポイント」という言葉でした。これは「痛みや不快に感じていること」を指し、お金を出してでも解消したいと顧客が感じるポイントです。実はこの視点を私は見逃していたように思いました。 商品見直しの狙いは? 現在、自社製品の商品ラインナップの見直しを行っています。会議では以下の点について分析し、新しい提案をしようと計画していますが、課題もあります。 顧客ニーズの調査は? ①顧客ニーズの分析 ターゲット層が求めているものは何かを考えます。特にペインポイントを解消するという視点で、年代別の特徴を調査したいと考えています。しかし、アンケートを行う時間がないため、正確な情報を得るにはどこからデータを集めるかが課題です。 自社の強みを考える? ②自社の強み どのような点が自社の強みなのか、ブランドイメージを損なわず、原点に立ち返る商品を検討します。 社内データで検証する? 成功事例をもとに、社内データでカスタマージャーニーを調べ、情報を集約して部署内で共有したいと思います。そこから、顧客ニーズをさらに深掘りする相談をしてみます。

クリティカルシンキング入門

5つの視点で学びを深める週にしてみよう

総復習で得た学びとは? 今週の講座では、これまで学んだ点を総復習する機会がありました。一つの点にばかり気を取られていると、他の学びを活かせないことがあるため、講座全体をしっかりと復習することで理解を深めていきます。 問題解決のための仮説構築 例えば、施策立案前の仮説構築では、イシューを特定し、イシュー中心で施策を進行します。また、施策の効果検証では、解決すべき問いを残して効果検証までやり切り、どんなリテラシーの人にも伝わりやすい見せ方(視覚化)を意識します。上司や同僚、取引先との情報共有や報告の際は、イシューを共有し、関係者間で問題の認識を統一することが重要です。ポイントを理解してもらえるような伝え方を心掛けます。 状況を整理し問いを立てる 「問い」を立てて取り組むことは何事にも重要です。状況を分解・整理して問いを定め、適切な解決策を導き出します。また、問いだけでなくチームメンバーの役割を明確にすることで、どのような視点での協力を期待しているのか理解しやすくなります。 伝えたいことを正確に伝えるには? 自分が伝えたいことが正確に伝わるコミュニケーションを心掛けることも必要です。相手のリテラシーに合わせた言葉選びや、相手が時間をかけずに理解しやすい見せ方(視覚化)を意識した資料作り、相手が何を期待し、何をすれば良いのかがわかりやすいコミュニケーションが求められます。意見を伝えるだけでなく、傾聴力も大切です。 クリティカルシンキングの磨き方 業務の中でクリティカルシンキングの反復トレーニングを行うことも重要です。具体と抽象、主観と客観を行き来しながら物事を捉えるよう努めます。他者の意見を聞いたり、自身の考えをフィードバックしてもらうことで、視点、視野、視座の三つを広げることを意識します。

データ・アナリティクス入門

データ分析でビジネスの未来を予測する方法

分析の目的と手順は? 分析は、比較(増減や時系列の変化、数字の意味)と何を明らかにするかの仮説が重要です。仮説を立てる際には、逆算思考で分析結果の見せ方や投入時間などを考慮します。課題解決のプロセスでは、自己の中でプロセスを明確にし、目的や狙い、コンセプトを先に確立することが大切です。その後、問題を特定し、どこに問題があるのか、なぜその問題が発生したのかを明らかにした上で、どのように解決するかを考えます。 データ分析で課題をどう解決する? ビジネスにおいてデータ分析を行う際には、まず現状と理想のギャップを見つける問題発見力や課題形成力を磨く必要があります。そして、課題解決の仮説を立て、自由な発想と未来からの逆算を用います。次に、客観性を備えたデータ収集を行い、そのデータを加工し、考察と未来への洞察力を磨きます。 新しい取り組みへの挑戦 漠然と総花的な活動に陥りがちで、あれもこれもと欲張ってしまうことが課題です。採用戦略や事業計画策定の際には、採用市場データの分析スキルを評価することが求められます。定性と定量の分析をビジュアル化し、仮説を持ってデータ収集と分析、考察を効率化します。毎年の活動には、新しい取り組みに挑戦することが求められます。最新情報へのアクセスや情報分析から、課題解決策の提案力を高めて引き継ぎます。 ロジックツリーで何が見える? ロジックツリーを用いて、課題(大学・高専との関係強化構築)や採用市場の傾向(少子化・18歳人口の激減、高学歴化・編入進学、高度人材の活躍など)を整理し、それらを明確化、細分化します。これにより、人材獲得のチャンスを検討します。実践を通じて学んだことを自分の活きた知識とするとともに、書籍や研修を通じて知識をアップデートし、実践能力の向上に努めたいです。

データ・アナリティクス入門

仮説検証で未来を切り拓く挑戦

仮説の再考は? 仮説の分類について考える際、私は従来「問題解決を過去から見る」観点に主眼を置いていました。しかし、仮説全体を見直すうちに、「結論や未来を予測し、仮定の上、検証する」点には十分踏み込んでいなかったことに気づきました。 視野を広げるとどうなる? そこで、仮説全体を見る際には、結論や未来の予測を含む多角的な視点を持ち、バイアスにならないよう視野を広げて考えることが重要だと感じました。結論、つまりゴールから出発しデータを集めて検証していくものの、その過程で手戻りが発生し、結果として何度もデータを再確認することがあります。こうした経験から「方向性を見いだせて初めて動き出せる」という体験を増やしてみたいと思いました。時間効率を意識することで、普段の行動に留まりがちになりますが、時にはうまくいかないことを試みる勇気も大切だと考えています。うまくいかないことから得られる手戻りや試行錯誤の過程は、生産効率を低下させる一方で、自己を納得させるための貴重な材料にもなります。 根拠に基づく行動は? 行動計画としては、「仮説を立てる」にあたって、数字に基づく根拠やフェルミ推定を活用し、意思決定において経験則に頼らず新しい立ち位置を見つけることを目指します。また、これまで行ってきたお客様の離脱予測を、仮説をもとに見直し、データ収集を通じて有効な改善策を模索していきたいと考えています。 データの真実は何か? さらに、KPI関連指標については、チーム単体での目標達成がデータ分析を経ないままであったことを反省し、達成の要因を深掘りすることで、本当に正しい事業活動を行えているかを検証します。他チームや類似業務との比較を通じて、データ取得し仮説を立て分析を行うことで、一層の改善を図っていくことを目指しています。

戦略思考入門

選択と集中で成果を出す心構え

目的は明確ですか? 選択と集中という考え方を、実習を通じて深く理解することができました。まず大切なのは目的を明確にすることです。明確な目的を持つことで、選択すべきものが見えてきます。選択肢を整理する際には、目的に立ち返ることで解決策が導き出されるように感じました。しかし、どれを捨てるべきかの判断は容易ではありません。そのため、定量的な指標は不可欠だと考えます。何となくの考えや慣習で判断するのではなく、数値に基づいて判断することで、自分自身だけでなく周囲の納得も得られるのです。トレードオフが発生することは十分に考えられるので、軸を持ち、最終的な決定に向けて実行していきたいと思います。 優先順位はどう? 数多くの取組を抱える中で、正しい優先順位をつけることが重要です。目的は「ある程度」明確になってきたので、効果が高いものや必要不可欠なものに時間を充てるように整理し、実行に移していきます。 成果の出し方は? 上司によっては、今回学んだことがうまくできている人もいれば、できていない人もいます。そのため、必ずしもブレイクスルーを求めるのではなく、ベストなタイミングと立ち振る舞いでチームとして成果を上げたいと考えています。 共有と整理は? 周囲に対しては、目的を明確に共有していくことが肝心です。自分に対しては、目的を分解し整理することが求められます。特に、積み上げで進行している現状があるため、定量的な指標に基づいて仮説を立て、検証し、状況をまとめることが必要です。指示があるからやるのではなく、本当に必要なものを実行する意思を持ちます。指示があっても必要でないものについては、しない理由を持って断る姿勢が重要です。現状はいささか混乱しているため、まずは情報整理を優先して進めていきます。

「時間 × 解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right