データ・アナリティクス入門

仮説の立て方で差がつくビジネス成果

データ比較はどう捉える? データは比較によってその価値が際立ちます。「何と比較するか」が特に重要です。仮説を立てる際には、フレームワークを活用し、網羅性を確保することが肝心です。また、仮説を切り捨てる際には、なんとなくではなく、はっきりとした理由を持って切り捨てることが必要です。 商品の見直しはどう? 売上が低迷している商品のリニューアル方針を考える際には、自社および他社の新商品や売上が好調な商品、不振な商品の販売動向や購買者の分析が求められます。特に間接競合においては、「何と比較するか」の経験的な蓄積があまりないため、これは大いに活用できる視点です。新商品のコンセプト評価が芳しくない場合には、方向転換も検討すべきです。 仮説検証の鍵は? 仮説を立てるプロセスでは、前提を疑い、フレームワークの活用や他部署からの意見を取り入れることで、網羅性を持たせることが重要です。仮説を検証する際には、比較対象を慎重に選ぶ必要があります。また、仮説を絞り込む段階では、切り捨ててよい理由を明確にしておくことが、今後同様の案件が発生した際にも活用可能な知見となります。

データ・アナリティクス入門

数字で読み解く成長ストーリー

代表値で分かる? データの状況を評価するためには、単純平均、加重平均、幾何平均といった代表値や中央値が用いられます。平均値は計算が簡単で直感的に理解しやすい一方、極端な値(外れ値)の影響を受けやすいという面があります。そのため、データのばらつきを示す標準偏差と併せて確認することが重要です。 小規模店舗見えてる? 複数の店舗の売上やイベントの各店舗での来場者数などを平均値だけで評価すると、店舗ごとの規模や条件の違いから、小規模な店舗や一時的な変化を見落とす可能性があります。こうした場合、標準偏差や中央値などの指標を追加することで、より詳細な状況把握が可能となります。 分析体制整える? レポート作成においては、平均に加え中央値、最頻値、標準偏差など複数の代表値やばらつきの指標を数値化することで、微細な変化に気づきやすい分析体制を整えることが求められます。さらに、ヒストグラムや折れ線グラフ、棒グラフなどを用いて直感的に理解できる分析を行い、Lookerstudioやスプレッドシートでテンプレートをあらかじめ用意しておくと、作業の効率化にも寄与します。

データ・アナリティクス入門

データ分析で見えてきた課題解決のコツ

データ分析の重要性とは? データ分析において重要なのは比較することです。データは分かりやすく加工して活用する必要があります。また、私自身が特に気をつけたいのは、目的を決めてから行動することです。課題がどこにあるのか、なぜそうなっているのかを考え、選択肢を出してから仮説を立てて進めることが大切です。 売上向上に必要な行動は? クライアントの課題解決に際しては、大きな目的である売上向上に対して、小さな目的を設定してから行動する必要があります。どこに課題があるのか、仮説を持ってヒアリングを行いたいと思っています。また、自身の営業計画立案においても、既存の課題や理由だけでは向上しないため、繰り返し検証して精度を高めていきたいです。 ヒアリングの視点はどうする? 具体的には、クライアントヒアリング時において、「What」「Where」「Why」「How」という観点から文章を用意し、必要に応じて「あるべき姿」とのギャップについて整理していきたいと考えています。自身の営業計画についても、現時点で考えている課題と理由を再検討し、改善を図りたいと思っています。

アカウンティング入門

テーマパークに隠れた会計学

テーマパーク会計はどう見る? あるテーマパーク事業を営む企業では、人件費を販管費ではなく売上原価に計上しているという事実に驚かされました。テーマパーク自体が商品であり、そこで働くスタッフが商品である登場人物として売上に貢献しているという独自の考え方が、会計処理に現れているのだと思います。この事例を通して、「帳簿をつける際には勘定科目に正解はなく、会社が収入や支出をどのように位置づけるかが重要」という言葉の意味が、より深く理解できたと感じます。 ソフト導入で悩む理由は? 会計ソフトの導入支援を行う際には、まずクライアントの事業内容をしっかりと把握し、どのような売上、費用、資産、負債が発生し得るかを具体的に想定することが重要だと考えています。入力したデータをどのようなセグメントで分析すれば参考になるのか、イメージを膨らませながらお客様と対話していきたいです。そのためには、事前にホームページなどを通じて事業内容を確認し、情報が不足している場合には同業他社の財務諸表の構造を調べた上で、初回の打ち合わせで不足情報をヒアリングしながら支援を進めていくつもりです。

データ・アナリティクス入門

柔軟な仮説が未来を拓く

初期仮説の危険性は? 仮説は初めから決めつけず、幅広い視点で持つことが大切です。あらかじめ仮説を立て、それに基づいて検証するため、もし初期の仮説に誤りがあれば、その後の工程にも大きな影響が出る可能性があります。 計画的データ収集は? また、仮説を検証する際には、必要なデータを計画的に収集することが求められます。必ずしも全ての情報が揃っているとは限らないため、誰にどのように情報を収集するか、目的に沿って進める必要があります。 売上データで何発見? 日々の業務で売上データを見る中で、発生した事象に対してまずは幅広く仮説を出すことが有効だと感じました。これまで漠然とした感覚で仮説の検証に取り組んでいたため、今後はより意識的に取り組むことが必要だと思います。 周囲の意見は頼も? 仮説を立てる際は、自分一人で考えるのではなく、周囲のメンバーからの意見も取り入れ、網羅性を高めるよう努めます。過去の経験や先入観をなるべく排除し、フラットな視点で物事を俯瞰することを心がけるとともに、仮説検証の目的を踏まえて最適なデータ収集方法を選択していきます。

クリティカルシンキング入門

数字が紡ぐ革新のストーリー

パターンはどう見る? 観測された事象データの相関比較から、背後に潜むパターンや特徴を発見し、未知の事象に対しては予測や仮説を立て、具体的な施策を検討しています。各プロセスでは、項目と事象の関係をブレークダウンして文字化することが重要であると考えています。 施策の領域は? また、ブレークダウンする際の項目数が多いほど、検討すべき施策の領域が広がるため、PDCAサイクルの回転回数を増やすことが可能となり、成功に近づけると感じています。 協業の効果は? この手法は、協業候補先企業の事業分析や、外部要因・内部要因の分析、事業戦略、シナジー効果などのスライド資料作成時にも有効です。具体的には、データを分解して対象企業の各販売業界ごとの比率を明確にし、各業界の今後の市場成長率との相関を基にした売上推移シミュレーションのデータ化やグラフ化が求められます。 結論はどうする? さらに、パワーポイント作成時は「結論-論拠×3」という構成を意識し、スライドメッセージと添付グラフの配置にも工夫を凝らすことで、論拠の濃度と伝わりやすさを向上させています。

クリティカルシンキング入門

データを多角的に分析する力を養う

データの分解にどう立ち向かう? 今回、数値データを扱う際には、データを正確に整理し、重複や漏れがないように分解することを心がけました。例えば、年齢別のカテゴリ分けや売上を単価と数量に分解すること、あるいは工程を細分化することなど、多角的な視点で情報を分類することを意識しました。 顧客分析で重点をどこに置く? このようなデータの分解方法は、ソリューション販売の戦略を構築する際に非常に有用だと思います。特に、顧客層を地域別や人口密度に基づいて分析することで、どこに重点を置くべきかが明確になります。当社製品をどの地域や規模の顧客に訴求するのかを見極めることが、営業エリアやターゲットの設定に役立つと感じました。 営業活動の現状をどう見直す? 現状の営業活動についても、業界全体の数値データをいろんな視点で分解して分析しようと考えています。この分析結果をもとに、現在の営業状況とどのように一致しているか、またはどこでズレが生じているかを見極めたいと思っています。これにより、正しかった施策と改善が必要な点がより具体的に把握できると考えています。

データ・アナリティクス入門

データ分析で見つけたWEB改善の秘密

WEBマーケで目指す成果とは? 私の業務はメーカーのWEBマーケティングに関するものであり、そのミッションは新規ユーザーをWEBページに集め、営業に引き渡すことで売上に貢献することです。具体的には、WEBページの閲覧状況を分析し、サイトの改善に役立てています。分析するデータには閲覧URL、流入キーワード、お問い合わせフォーム遷移率、その後の商談化率、売上金額などがあります。 分析の目的設定の重要性 分析においては、まず目的を明確にし、その目的を達成するために必要なデータの選定とどのように加工・分析するかを検討します。やみくもにデータを分析しても意味がないため、仮説を立てた上で分析を行うことが重要です。 業務スキルをどう活かす? 学んだことを業務に活かすために、まずは分析のフレームワークを学び、それを活用できるスキルを身につけました。グループワークを通じて、わかりやすく伝えるスキルも向上させ、学習を業務に積極的にアウトプットしています。これらのスキルと知識を活用して、より良いWEBサイトの作成と改善を目指しています。

データ・アナリティクス入門

論理で切り開く自分革命

状況整理の意義は? 直面している状況を具体的に整理し、何が問題なのかを明確にするプロセスが非常に役立ちました。特に、あるべき姿(To be)と現状(As is)のギャップを定量的なデータをもとに洗い出すことで、客観的に問題点を把握できるようになったと感じます。 課題の対処法は? 何から取り掛かるべきか迷ったときは、What(何が)、Where(どこで)、Why(なぜ)、How(どうやって)のステップを参考にすることで、論理的に整理しながら課題にアプローチできました。たとえば、収支の問題に直面した際は、売上と費用に分けてどこに課題があるのかを、ロジックツリーを活用して可視化する手法が有効でした。 学びや実感は? また、クライアントが提示する課題が本当に解決すべき問題であるかを見極めるために、内部の上位者とのディスカッションを通じて仮説を壁打ちする機会が持てたことは、より良い提案や新たな切り口を考える上で大いに学びとなりました。これらの経験は、問題解決の手法の幅を広げ、実務における対応力を高める大きな糧となっています。

データ・アナリティクス入門

数値分析で見える改善のカギ

売上低下の原因は? 売上低下の理由を分析する際、問題箇所の特定、売上構造の分解、そして仮説設定と検証方法をリアルタイムで実践しました。特に、売上単価については平均値だけでなく中央値も用いることで、新たな切り口から問題点を把握できることを再確認しました。また、グラフの見せ方が伝える力を持つことについても改めて学び、理解を深めるきっかけとなりました。 予算未達の理由は? 同様に、予算が未達成となっている要因を特定するため、予算構成項目を分解し、前年や前月との比較を通じて落ち込みが生じている点や、伸ばすことが可能な点を明らかにしました。さらに、予算未達成が「予算設定自体の高さ」なのか「実績の低下」に起因しているのかを明確にすることも試みました。 社内データの解析は? 最後に、社内データを活用して予算の各項目ごとに集計を行い、予算比、前年比、前月比などの比較を通じて問題箇所の把握と予算の位置づけを行いました。問題箇所が明らかになった後は、ギャップを3Cの視点から分析し、具体的な仮説を立てた上で検証を進めました。

データ・アナリティクス入門

売上低下の真因を明らかにする分析術

総復習で得た新たな視点とは? 今までの講義の総復習だったので、各パーツで学んだ内容を一連の流れとして把握できました。仮説、網羅的思考、目的の設定、見せ方、分解など、分析の知識と新たな思考法を学ぶことができました。また、結果をイメージした分析の重要性も体感することができました。 なぜ売上が思わしくないのか? 現在、売上が思わしくないため、きちんと目的を持った分析、原因の追究、仮説・検証の繰り返し、そして網羅的な思考を意識して業務に取り組みたいと考えています。さらに、定性的な言葉と定量的なデータを組み合わせることで、説得力のある提案ができるようにしたいです。 今後の施策にどう活かす? 売上が上がらなかった理由については、いくつかの仮説があります。まずはこれを基準に分析を行い、それに加えて網羅的な仮説も追加して多角的な分析と提案を実施していきます。原因の追究を行い、今後の施策に活かすことが重要です。また、数値がなくても、今回学んだ思考は応用可能な部分があると思うので、売上の改善に役立てていきたいと考えています。

データ・アナリティクス入門

4Wで解く数字の真実

どんなゴールを目指す? 定量的なゴール設定が重要であり、何を分析するかについても決め打ちするのではなく、Who、What、Where、Whyといった4Wを活用して検討することが有効です。 視野のズレを感じた? これまで、自身が「これだ」と感じたデータ分析に取り組んだ際、上長との視点の違いが生じたことや、部下への指示の際にも同様の問題が見受けられた経験があります。 数値分析の進め方は? 現在進行中の案件はありませんが、今後商材別の売上比較を行う際には、アクセス数、転換率、客単価などの各要素を因数分解する手法が効果的だと考えます。また、アクセス数についても広告、自然流入、SNSなど、媒体ごとに分類することでより具体的な分析が可能になるでしょう。 顧客分析はどう活かす? さらに、新たなプロジェクトが始動する際には、顧客理解を深める目的で、売上、アクセス数、転換率、客単価といった要素の詳細な分析に取り組み、アクセス数をもたらす各媒体の数値も明確にすることで、現状を正確に把握できるようにしていきたいと思います。
AIコーチング導線バナー

「売上 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right