クリティカルシンキング入門

伝わる資料作りの秘訣

グラフや色の選び方は? 資料作成において、グラフの使い方やフォント、色の選定といった点に気を配ることで、伝えたい内容がよりわかりやすくなると学びました。何を伝えるのかを明確に整理し、その内容に適したグラフを用いることが大切だと実感しました。 文章工夫はどうする? また、文章についても読者にしっかり伝えるための様々な工夫が存在することを学び、今後の表現方法の参考にしたいと感じています。 営業資料の作り方は? 今回学んだグラフの作り方を活かして、営業会議用の資料を作成する予定です。事業ごとの売上推移や売上構成比など、過去から現在までの変化を把握し、注力すべき事業や見直しが必要な事業を視覚的に示せると考えています。 情報収集のポイントは? さらに、伝えたい状況や状態をグラフに反映させるために、必要な情報が十分に集められているかどうかを確認することが重要です。適切な情報がなければ正しい現状分析ができないため、情報収集の方法や、集めるべきデータの有無についても見直していきたいと思います。

データ・アナリティクス入門

データ活用力を劇的に向上させる方法

平均値の限界を知る データを分析する際、すぐに平均値を出してしまいがちですが、平均値には外れ値に弱いという特性があることを学びました。また、代表値には様々な種類があることも知り、今後データ分析を行う際には適切な手法を選ぶ必要があると感じました。 精緻な分析を行うには? 収支分析では、単純平均を使用する場合と加重平均を使用する場合を考えることで、より精緻な分析が可能になります。こうした分析により、問題点の把握が促進され、より適切な打ち手を考えやすくなると思います。さらに、効果的なグラフを用いることで、分析結果を周囲に分かりやすく説明できるようになるでしょう。 グラフで何を伝える? 分析を行う際には、常に顧客ごと、業種ごと、各部門や担当者ごとに適切な代表値を用いることを意識します。この結果、売上高や利益、経費、所属人数などが異なる場合でも、より合理的な比較が可能となります。また、分析結果を視覚的に分かりやすいグラフにすることで、事業部としての素早い意思決定にもつながると考えています。

戦略思考入門

可能性を活かすための戦略的思考

物事を捨てる選択は正しいか? 戦略的に物事を捨てることの重要性を再認識しました。業務において「捨てる」という選択は、可能性を手放すことと同義になる場合もあります。しかし、実践演習で経験したように、ROIなどの定量的指標を用いて優先順位をつけることが重要だと感じました。 顧客の優先順位をどう付ける? 実践演習で学んだ内容を活かして、顧客の優先順位付けを行い、どの顧客を優先的に訪問することで営業利益を最大化できるかを考えたいと思います。これまでは、過去の売上や顧客の規模で大まかに仕分けをしていましたが、今後は他の数値を参考にしながら、ROIを高めるために組織運営を進めていきたいと考えています。 データ分析で得られるものは? 数値分析を進めるにあたり、社内でどのようなデータが利用可能か、またどのように計算できるかを一次情報に基づいて分析したいと思います。さらに、現在行っている業務やサービスを洗い出し、無駄や不要なものが残っていないかをゼロベースで再検討していきたいと考えています。

クリティカルシンキング入門

多角的視点で売上アップを実感!

問題解決のための分析方法は? 状況を正しく把握して行動を判断するためには、問題をより細かく分解し、複数の視点からデータを収集し整理することが重要であると学びました。データをまとめ、仮説を立てた後は、さらに新しいデータを集めてその仮説の真偽を再検討します。このプロセスを通じて、状況を正確に捉えることができると理解しました。 自店舗の分析をどう深める? 現在、各部門や各商品の販売数、実利益、前年対比、予算、目標設定を行っていますが、これを自店舗のみならず、エリア内の他店舗のトレンドや市場トレンドと照らし合わせています。これまでもこのような分析を無意識に行っていましたが、今回の学びを通じて、それが複数の視点による分解であったことに気付きました。 他店舗の成功事例をどう活用する? エリア内の他店舗にも連絡を取り、自店舗の特徴を聞き出しています。特定の部門や商品の売上が高い店舗の特徴や取り組みをヒアリングし、それを自店舗にフィードバックすることで売上向上を図っています。

データ・アナリティクス入門

フレームが導く仮説と成長

体系的学習の成果は? 実践演習では、当初自分が考えていた解答がフレームワークの4Pに沿っていることに気づき、初めてフレームワークを意識する機会となりました。自然と頭の中でまとめていた内容が、体系的に整理されていることを実感し、非常に印象的でした。今後は、本日学んだ3Cや4Pに加え、これまで知っている他のフレームワークも積極的に活用し、網羅的な仮説構築に努めたいと考えています。 仮説と反論の重要点は? また、データ収集において自分が立てた仮説に対して反論を想定する意識がなかったことに気づかされました。この視点を取り入れることで、説得力を大いに高めることができると実感しました。マーケットリサーチに取り組む際には、まず市場の動向を踏まえ仮説を構築し、反論も視野に入れたデータ収集を心掛けたいです。過去の案件でガラス業界のリサーチを行い、代替素材への移行が売上に与える影響を数値で示した経験を活かし、今後はクライアントに対しても納得感のある提案ができるよう努めていきます。

データ・アナリティクス入門

仮説とデータで見える未来

仮説思考はなぜ必要? 仮説思考の大切さを改めて実感しました。日々得られるファクトに対して「なぜ?」や「どうすれば良いか?」と疑問を持つ中で、あらかじめ仮説を設定することで業務上の疑問点や関心事に対し、より具体的なアプローチが可能となり、結果として業務の精度が上がると感じました。 データの活かし方は? また、データ収集においても、ただ数多くの情報を集めるのではなく、データの特性を十分に理解した上で、絞り込んだ活用を行う必要性を感じました。実績の分析に際しては、例えば「この時期だから売上が伸びないのか」や「この季節だから売り上げが良いのか」といった視点で、状況を整理することが有効でした。 記録の意義は? さらに、手元にあるデータやメモを活用し、気になった点や疑問点を記録しておくことは、仮説の検証や業務改善に直結する重要なプロセスであると感じました。日々その記録を見返しながら自問自答を繰り返すことで、自分なりの解を持ち、分析を重ねる姿勢が身に付いたと思います。

データ・アナリティクス入門

仮説と数字で描く未来

どの要因を重視する? より良い分析を行うためには、単に手法を実施するのではなく、実態だけでなく、事象の背景にある要因に目を向け、仮説の設定に力を入れることが重要です。たとえば、期間、事業部、他社との比較や、売上を数量と単価といった要素に分解して、その関係性を明確にすることが求められます。 どの数値に注目すべき? 現在、次期中期経営計画策定に向け、社内外の事業環境および自社の事業構造の把握に努めています。中期的な戦略を練る上では数値が非常に重要であるため、その分析結果をもとに、部内の若手社員と見立てを共有し、意見交換を進めることを目指しています。 仮説検証、どう進める? また、これまで手薄だった社内データの分析についても、各種検証を重ねた結果、実施可能な体制が整いつつあります。データ分析にあたっては、仮説設定を重視し、エクセルのピボットテーブルや統計ツール、可視化ツールを活用しながら、複数のメンバーで議論を交わし、一定の結論に導くプロセスを進めています。

データ・アナリティクス入門

自分の視点で挑む数字の世界

数字の裏を見る? 数字をただ眺めるだけでなく、何を調べたいのか、どの点が重要かを事前に考える習慣が身についたと感じています。事前にどのようなデータが必要か、どんな情報がありそうかを予測し、仮説を立てることの大切さを、実際の分析を通じて実感できました。 売上の謎は? また、売上の上昇や下降といった大枠だけを把握した後、次のステップとして自ら仮説を立て、複数のデータを組み合わせて検証する練習にも取り組んでいます。データ分析専門のチームが示す資料をそのまま受け入れるのではなく、自己の視点でデータを比較検討することに注力しています。 実践の手順は? 具体的には、以下の手順で実践しています: ① 週明けに発表される週次予約情報や売上実績を前週と比較し、自分なりの考察を深める。 ② 得たデータを企画書に盛り込み、提出する。 ③ これらの実践にあたり、必要なデータの提供をデータ分析チームに依頼してみる。 これらの取り組みを通じ、分析力の向上を実感できています。

データ・アナリティクス入門

分けて比べる実践の記録

手法の意図は何? 今回のデータ分析では、まず「分けて比べる」という手法を意識し、対象や基準を明確に設定して検証しています。データ分析の目的—つまり、何のために分析を行い、どのような成果を期待するのか—をはっきりさせた上で、ゴールや仮説、今後の取り組みイメージを具体的に描くよう努めています。また、目の前にあるデータのみを頼りにせず、生存者バイアスに十分注意しながら分析を進めています。 売上向上の秘訣は? 購入者の分析とパートナー企業の売上分析の双方について、各々の良い点と改善すべき点を明確に整理することで、パートナー企業全体の売上向上に寄与するマクロサポートへと繋げたいと考えています。さらに、サンプルデータや本講座を通してデータ分析の実践回数を積み重ねることで、これまでの経験に加え新たなプロジェクトに活かせる知識を身につけたいと思います。過去に他のプロジェクトで培った分析経験を再検証し、今後のプロジェクトに向けたデータ収集や分析手法の向上を図っていく所存です。

クリティカルシンキング入門

データ分解で未来を切り拓く学び

データ分解のコツは? データを分析するときには、まず分解することの重要性を学びました。物事を分解する際には、次の三つのポイントが大切です。まずは手を動かすこと、機会的に分けないこと、そして複数の切り口で分けることです。また、MECEとは「もれなく、ダブりなく」切り分けられた状態を指します。分解の切り口には、層別分解、変数分解、プロセス分解があります。 売上数値の見方は? 自社製品の売上状況や他の薬剤の売上状況を記載した月毎のデータを用いることで、今後のアクションを検討する際に役立てたいと考えています。ただ単に数字の流れを追うのではなく、データを複数の切り口で分解することで課題を抽出します。 施設売上の課題は? 施設の売上状況を基に課題を探り、今後の行動を検討する際にこれを活用したいと考えています。従来の月毎の売上やシェアだけでなく、同種同効薬や関連薬剤のデータも収集し、季節別や医師の特徴(年齢や出身大学)、地域別などにデータを分解してみます。

データ・アナリティクス入門

幾何平均で見える新世界

なぜ異常値が出る? これまで、代表値や単純平均、加重平均は業務で使用してきましたが、幾何平均、中央値、標準偏差は財務業務では使う機会がほとんどありませんでした。特に、売上の成長率を計算する際に、幾何平均を用いなければ異常値が算出されてしまう点には驚きを覚えました。このことについて、なぜそのような結果になるのか、また今後どのように活用できるかを、再度整理する必要があると感じています。 今後の計算はどうする? また、これまで主に財務データを扱ってきたため、幾何平均や中央値、標準偏差の計算・分析を実施する経験がほとんどありませんでした。そこで、まずは顧客の年齢層データを対象に、中央値や標準偏差を計算し、その分析結果を社内で共有する予定です。今後は、財務業務に応用できるデータとして、幾何平均、中央値、標準偏差が有効に活用できる分野を探り、エクセル関数を用いた計算方法についても調査し、実際に計算していきたいと考えています。

データ・アナリティクス入門

ビジネス課題を解き明かす仮説思考の力

仮説の分類とは何か? 仮説の分類という概念を知らなかったため、この考え方は非常に参考になりました。ビジネスにおいて重要な課題であるコミュニケーションと問題解決を、時間軸を用いて分類し、仮説を立てる思考法は大変勉強になりました。 仮説思考を活動方針にどう活かす? 現在、来期の活動方針を策定しており、今回学んだ仮説思考を活用したいと考えています。前々期、前期、今期のデータを比較することで、売上に課題がある製品とその属性(新製品か定番品か、製造コストなど)を基に、改善計画を提案できるのではないかと考えています。 売上課題の仮説をどう立てる? 具体的には、売上における課題についていくつかの仮説を立ててデータを比較してみる予定です。例えば、①売上金額が減っているのか、②粗利率が下がっているのか、といった課題の内容を明らかにし、更にその課題が発生している要因について仮説を立てて掘り下げていく作業を行う予定です。

「売上 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right