データ・アナリティクス入門

データで紡ぐ成長の物語

データ整理は安心? データの切り出し方について、以前は数字が欲しいならこれといった感覚で扱っていたため、具体的に整理する作業が非常に有意義でした。成長率の求め方についても久しぶりに見直し、これまで間違った計算方法を用いていたことに気づけたのは大きな収穫です。 分布分析の効果は? 定量分析の手法として、代表値と分布に注目し、データをビジュアル化してより理解しやすくする方法を学びました。平均値が外れ値の影響を受けやすいという点に加え、単純平均、加重平均、幾何平均、中央値といった代表値や、標準偏差を用いた散らばりの把握、さらにはヒストグラムでばらつきを表現するテクニックが印象に残りました。 データ活用の秘訣は? また、ECにおける購入者分析や売上、アクセス解析にこの知識を活かせると感じました。特に、複数の商材を取り扱う場合のデータ集計処理について、最終的に求める数値や、それをどのようにビジュアル化すれば良いのかを意識したデータ分析ができるようになりました。 感覚から論拠に? これまで感覚的に行っていたデータ処理について、なぜその手法を用いるのかを説明できるようになり、自信がつきました。今後は月次のアクセス状況の説明にも、より論拠をもって提案し、販売方針や経営判断に結びつけていければと考えています。

クリティカルシンキング入門

データ分析で見える新たな発見と改善法

データをどう視覚化する? データを分析する際には、今ある数字に一手間かけることが重要です。ただ数字を並べるだけでなく、グラフや表に変換すると新しい発見が生まれます。また、比率に変換することで別の角度からデータを見ることができ、さらなる洞察が得られます。 分解の基準は何が有効? データを分解する際には、人、時間、手段などの基準で区切ると分かりやすくなります。例えば、月次や年次の売上分析、SNSのインサイト分析など、数字が明確に示されるものだけでなく、業務の効率化や成果が出なかった場合の原因分析にも役立ちます。 問題の特定と解決策のステップ まず、起きた問題に対して「もれなくダブりなく」を意識し、全体を大きく分けて定義します。その際には、層別分解、因数分解、プロセス分解を用いることが有効です。次に、出てきた項目をさらに分解し、どこが問題点なのかを数字や表で明確にします。そうすることで、問題の箇所を特定しやすくなります。問題が特定できたら、なぜそうなっているのかを考えます。そして、どう解決すれば良いのかを分析から導き出し、仮説を立ててトライアンドエラーを繰り返し、最適な解決策を見つけます。 これらの手法を念頭に置くことで、データ分析がより効果的になり、業務の改善や効率化にもつながると感じました。

アカウンティング入門

振り返りが生む分析力と発見の旅

指標分析の重要性を理解する 売上高、営業利益、経常利益、当期純利益といった指標の順番で分析することの重要性を学びました。分析に際しては、比較や対比を用いて傾向の変化や大きな相違点を見出すことが必要です。 説明を丁寧にする意識を高める ケーススタディの設問に答える際に感じたこととして、コアな部分は捉えられているものの、顧客心理の説明においては、もう少し丁寧に説明する必要があると気づきました。これは、言葉足らずな部分を丁寧にカバーすることを軽視していた結果であり、もっと丁寧に説明する姿勢が重要だと実感しました。今後は、説明の出口部分から意識をより高めていこうと思います。 提供価値の分析と強化点は? 自社の提供する価値と競合他社の価値をP/Lから分析し、それによって自社が強化したい点や改善すべき点を考えてみます。さらに、自分が関わる事業の商品やプロモーションで今後どのように注力していくかを検討したいと思っています。 数字の定着と今後の計画 自社のP/Lデータはすでに確認しましたが、数字を頭に定着させるために直近2年分と今期の予測を自分でまとめ、空で言えるようにしてみようと思います。競合他社のデータについては、今後数週間で確認する予定です。そして、推薦いただいた本もぜひ読みたいと思っています。

データ・アナリティクス入門

同条件で実感!比較のヒント

どうして比較するの? 分析の基本は「比較」にあります。しかし、比較を行う際には、正しい対象同士を照らし合わせなければ、正確な結果は得られません。たとえば、単に全体の平均値を比べるのではなく、同じ条件下(Apple to Apple)での比較を意識することが重要です。具体的には、ある施策の効果を評価する場合、対象は施策を受けたグループと、受けていないグループに限定し、その効果が明確に反映されるように設定する必要があります。また、比較を行う際は、外れ値の有無やデータの対象数、そして分析の目的に沿った比較がなされているかどうかにも注意を払うことが求められます。 比較の実践はどう? 現在、売上やマーケティングの集計そのものはしていませんが、常に「比較」を意識しながら、比較対象が正しいかどうかを確認する視点を持つよう心がけています。目的に合った分析であるかを常に考え、比較した結果をどのように的確に示し、他の人にわかりやすく伝えるかという点が大切だと思っています。 結果提示の工夫は? 今週の学習内容については、特に疑問に感じた点はありませんでした。ただし、グラフや推移グラフ以外の方法で、他の人に理解しやすい分析結果の提示方法について、どのような工夫がされているのか知りたいと感じています。

データ・アナリティクス入門

仮説検証で拓く本質への道

本質に迫る秘訣は? これまでは、都合の良い答えに飛びつき、裏付けが偏った分析をしてしまっていたことに気づきました。しかし、問題解決のプロセスに沿って仮説と検証を正しい順序で進め、事実に基づいて判断することで、本質的な課題に早くアプローチできると学びました。 目的の重要性は? また、分析に取り組む前には、まず目的を明確にすることが極めて重要であると実感しました。目的が曖昧だったり、途中で忘れてしまうと、結論を導き出せず成果へとつながりません。定期的に目的を振り返ることで、必要に応じた軌道修正が可能になるという点も大きな収穫でした。 複数視点の意味は? さらに、分析を行う際には、単一の数字や結果だけに頼らないため、比較を行うことの重要性を再認識しました。一つの指標だけでは陥りがちな思い込みを避け、複数の視点から検証することで、説得力のある結論に近づけると感じました。 具体策をどう試す? 具体的な実践としては、月ごとの売上データに実際に触れてみることにしています。これまでは解説付きの資料に頼りがちで、問題点やその対策が本質的に理解できていなかったと感じます。売上の増減に影響を与えている要因を、自部門の活動と照らし合わせながら振り返り、今後の対策へとつなげていこうと思います。

データ・アナリティクス入門

仮説と現場で読み解く数字の物語

現場で何が起きる? 平均値などの代表値を把握するだけではなく、現場で実際に何が起きているかを想像しながらデータに向き合うことが大切です。そのため、自分自身で仮説を立て、仮説検証型で分析を進めることが求められます。分析の目的に応じて比較する対象も変わるため、たとえば「夏の気温は本当に上昇しているのか」という問いに対して、単純に1年前のデータや他の地点のデータと比較するだけでは、十分な答えは得られにくいでしょう。 ビジュアルで何が分かる? また、代表値の理解をより精緻なものにするために、データのビジュアル化を試みることが重要です。第三者に伝えるときだけでなく、自分自身で数値を分析する際にも、数字だけでは見逃しがちな現場の情報に焦点を当てるため、ビジュアル化の活用を心がけましょう。 AI活用はどう役立つ? さらに、医療施設ごとの売上や従業員ごとの活動履歴など、大量かつ複雑なデータに関しては、定型的な加工に陥りやすい傾向があります。まずはデータの分布を把握するためのビジュアル化を行い、分析の目的に合ったデータの特徴を考察する時間を確保することが推奨されます。このプロセスにはAIの活用が有効であるため、迅速に作業に取り掛かれるよう、使用するプロンプトをあらかじめ保存しておくと便利です。

データ・アナリティクス入門

数字に魅せられる!学びの実験室

数値とビジュアルの関係は? データ比較の際、数字に注目し、その数値をビジュアル化することで、数式に基づく関係性を把握することの重要性を学びました。大量データの分析では、目的を明確にした上で仮説を立て、データ収集を経てその検証を行うプロセスが大切であると感じました。また、分析する際には、単純平均だけでなく加重平均や中央値、さらには散らばりを示す標準偏差といった代表値を活用することで、より深い理解が得られると実感しました。 散らばりの意味は? 特に、データの散らばりに注目することで、数値の乖離をどのように防ぐかという点が印象に残りました。数値の集約や分布の理解は、分析の精度向上に大きく寄与すると考えています。 売上推移の分析は? 実績報告書の作成においては、単月売上や累計売上の推移を把握するため、商品別や販売先別の分析が有効であると思います。各取引先に対する実績や、特定商品の業績分析を行う際には、加重平均や中央値を用いて売上の平均成長率を求め、業績の変動理由について目的に沿った仮説を立て、データ収集と検証をする手法が有用だと感じました。 分布の理解は? また、正規分布の説明では、標準偏差に関する具体例の一部が分かりにくかったため、さらなる理解を深める必要があると感じました。

データ・アナリティクス入門

分析で得た洞察を行動に変える方法

売上予測の計画をどう立てる? 売上予測においては、過去の事例や他社、海外の事例と比較しながら計画を立てることが重要です。実績が更新されるたびにその計画との比較を通じて事業の進捗を評価し、改善策を議論しています。このことから、「分析は比較なり」という定義はやはり真理だと感じています。また、扱うデータの理解を深め、その知見をステークホルダーと共有するためには、アウトプットの整理と見せ方を適切に選ぶ必要があります。 分析計画表はどのように工夫する? 分析を進める際には、毎回分析計画表を記載し、目的に合わせた分析手法を選択して言語化した上で作業を進めています。しかし、どのデータをどのように加工して用いるかにはあまり触れていないことが多いと感じました。そのため、テンプレートを見直し、自分以外の人がその分析の思考プロセスを理解しやすくするよう工夫が必要です。 新たなデータ分析のアプローチは? 具体的には、現在のテンプレートでは実際に分析に用いたものしか記載されておらず、選択可能なデータの種類とその選択理由、分析手法の採用理由を明確化するような構成に変更する予定です。新たなデータを分析する場合、そのデータの特性や限界を適切に確認し、分析結果とともに共有することが重要だと考えています。

クリティカルシンキング入門

問題解決の道を切り開く分解術

問題解決の鍵は何か? 問題解決を行う際には、物事を分解することが重要です。分解する際は、まず全体を定義し、漏れや重複がないように意識することが求められます。 分解方法のバリエーション 分解の方法には、層別分解(例えば、「○○」と「○○以外」)、変数分解(「売上=単価×客数」)、プロセス分解(「入店前、入店後」など)といった切り口があります。もし分解の方向性に迷ったら、「いつ」「だれが」「どのように」といった視点から考えてみることが効果的です。 クライアント課題の深掘り法 また、クライアントの課題の根本原因を探る際には、MECEで分解を行い、特に重要なポイントを追求することが役立ちます。さらに、クライアントに提供している制作物を目標にさらに近づけるため、改善のポイントを洗い出すことも重要だと感じます。 データ加工へのチャレンジ 私はデータの加工が得意ではないため、仮説の幅を広げる練習をしているところです。3つの分解方法を利用して目の前の課題を分解してみても、選択肢がMECEに則っておらず、苦戦しています。しかし、一人で煮詰まってしまった時には、ChatGPTを活用しながら、反復練習を繰り返し続けています。

データ・アナリティクス入門

目的を定め柔軟に切り拓く

なぜ仮説が必要なの? 分析においては、単にデータを整理して新しい気づきを提供するだけではなく、自分自身で仮説を立て、その仮説に基づいてどのような分析を行いたいか、また必要なデータは何かを考えることが重要だと学びました。以前は無意識に必要なデータを集めていたこともありましたが、目的を明確にすると分析のアプローチが大きく変わると感じます。同時に、立てた仮説に囚われることなく、他の可能性も公平に検討するスキルを身に付ける必要があると認識しました。 市場と売上の本質は? また、毎日の売上実績の確認は、単純に前年との比較やKPIの向上を狙うだけでなく、競合他社のマーケット動向や顧客へのアプローチについても視野を広げることが求められます。一社だけではなく、3Cの観点から広く分析することで、データが十分でなくても次の一手を打つための新たな視点が得られると考えています。 データ活用の秘訣は? 日々の実績やKPIのチェックに加えて、整理したデータをどう活用するか、チャレンジ精神を促す分析やその見せ方を意識することが必要です。競合の市場シェアデータなどを随時入手し、自分の活動が先月や過去と比べてどのように変化しているのかを具体的に確認できると、より実践的な行動変化にもつながると期待しています。

クリティカルシンキング入門

明確な数字が導く説得の道

売上目標は具体的? 売上目標を具体的な数値で設定し、グラフを活用することで、経営判断やプレゼンの質を向上させる手法が印象的でした。まず、漠然とした課題ではなく、明確なイシューを特定することが重要です。イシューが明確になったら、データや異なる切り口を用い、ピラミッドストラクチャーで論理を整理するのが効果的です。また、イシューは「問い」として常に意識し、考えているうちに方向性がブレないようにメモを残すことが推奨されます。 数字と論理の関係は? 具体的には、「売上目標〇〇億円」と数字で目標を定め、日時、週次、四半期、年次といった各種のグラフを目的に合わせて作成する手法が有効です。また、ピラミッドストラクチャーを意識して、①イシューの特定、②論理の枠組みの構築、③適切な根拠で支えるというプロセスを繰り返すことで、より説得力のある資料づくりが進むと感じました。 施策の意義は伝わる? 今回の学びは、実際の融資交渉や新規事業の場面で資料作りに役立つとともに、社内で売上目標を設定する際にも、「なぜこの施策が必要なのか」が伝わる具体例を示すことの重要性を実感させました。今後は、チーム内でこれらの考え方を共通言語として活用し、より具体的でわかりやすい議論を進めていきたいと思います。

クリティカルシンキング入門

深掘りで磨く伝わる分析術

データ理解はどう変わる? 来場者数や店舗別売上の分析を通じ、データの切り分け方やグラフ作成、説明方法の違いによって、相手の理解度に大きな差が生じる可能性があることを学びました。また、他者が提示した集計データやグラフを直感的に判断するだけでは、誤った認識を抱くリスクがあることにも気づかされました。 実務にどう活かす? 今後は、提示されたデータに対して一歩踏み込んだ検証を行い、分析結果を示す際には相手の理解を意識しながら、より深い考察を加えて伝えていきたいと考えています。実際、グループ店舗の月次や年次実績の集計・分析を担当しているため、今回の学びはすぐに実務に活かすことが可能です。 提示方式はどうする? 店舗別データを分析する際には、結果の提示に留まらず、批判的な視点で多角的に検証し、結果を受け取る側の立場を意識した「伝わる見せ方・伝え方」に努めたいと思います。今日の演習で得た気づきを早速明日からの業務に活かし、月末に実施するグループ店舗の月次実績の集計・分析や回覧資料の作成において、これまでの方法を見直し、データの示し方や分析の切り口を再考する予定です。従来の手法に囚われることなく、より伝わりやすく、意味のある資料作成を目指して取り組んでいきます。

「売上 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right