データ・アナリティクス入門

データ分析で未来を切り拓くために

データ分析の目的を見直す データ分析の手法として、データの収集、加工、そして発見に焦点が当たりがちですが、何のためにデータ分析を行うのか、その目的が最も重要だと認識しました。そのために必要なデータ項目を選定し、それに基づいてデータを収集する習慣や仕組みを作る必要があります。ただ業務をこなすだけでは、将来に向けた効果的な分析ができず、特に自社の業務データはインターネットで入手できないため、自社内での心がけが欠かせません。 本当の売上分析とは? 私の業務では、データを集計して資料に記載することで終わることが多く、本来の意味での分析に至っていないと感じました。自部門の売上高を集計することが多いのですが、他部門との比較を通じて本当の意味での売上分析を行う必要があり、もっとオープンな視点での比較を考える必要があります。また、落札情報などを蓄積し、市場の相場観も併せて分析することが求められています。 有用なデータの収集方法とは? 現在、社内では中期経営計画の策定時期が来ており、過去の売上や競合他社の状況、他部門との比較を行いながら、データ分析を活用したいと考えています。しかし、データが社内に散在しており、有用なデータが収集しにくいという課題があります。そのため、将来を見据えてどのようなデータが必要かを社内で議論し、データ分析がしっかりと根付く職場環境を作りたいと思います。データを蓄積するためのフォーマットを作成し、社内メンバーがそれを保管・活用できる仕組み作りも進めていきたいです。

データ・アナリティクス入門

MECE思考で見える未来

情報で迷う理由は? データ分析の際、目についた情報に振り回され、時間がかかってしまうことや、都合の良い情報ばかりに頼って決め打ちになってしまう問題を感じています。そこで、MECEの考え方を取り入れることにしました。 MECEの切り口は? MECEには、全体を複数の部分に分ける層別分解と、全体を構成する変数に分ける変数分解という2つのアプローチがあります。たとえば、層別分解では年齢、季節、販売チャネルなどで分析し、変数分解では売上=客単価×客数や売上=商品単価×販売数のように捉えることができます。 分解できないのは? また、MECEに分解できない例として、モレなしでダブリがある、モレありでダブリがない、モレありでダブリもある場合が挙げられます。今後は、売上分析や業界、顧客分析、さらには業務の課題解決にもこの考え方を積極的に活用していきたいと考えています。 データ加工のポイントは? 現在、売上分析データを加工中であり、来週からはMECEの視点を取り入れたデータ加工を進める予定です。加えて、ロジックツリーを書き出すことで思考のスピードアップを図りながら、業務の課題解決に向けた取り組みも強化していきます。 情報取得の見直しは? 以前、情報の取得に時間がかかることや、都合の良い情報だけを集めて決め打ちしてしまう点に気がつきました。そのため、現在作成中のデータをもう一度フラットに俯瞰し、MECEを意識したフレームワークを使って再検討に努めています。

データ・アナリティクス入門

実践で磨くデータ解析の魔法

分析の本質に迫る? 今までは、適当にグラフを選んだり、大まかな平均値を算出するだけで十分だと考え、自分なりの解釈でデータを加工していました。しかし、今回の学びを通じて、目的に応じた最適な計算方法や加工方法が存在することを再認識し、そのおかげで分析力が格段に向上することを実感しました。たとえば、ヒストグラムを用いることでデータの散らばりを可視化できることや、代表値として単純平均だけでなく、加重平均や幾何平均を算出することで、より精密な分析が可能になる点を学びました。演習やグループワークを通じ、目的や仮説に合わせた手法の使い分けの大切さも理解できました。 データ分析をどう工夫する? グラフの作成やデータの計算には苦手意識がありましたが、今回の学びをもとに自主的に練習していくことの重要性を感じました。普段はアプリやITツールを使って数字をまとめ、それをもとに売上報告や予実管理を行っていますが、今後は自分で実際にデータを加工し、深く掘り下げてみようと考えています。たとえば、顧客アンケートの分析においては、単純平均だけでなく、満足度のばらつきを把握するための計算に挑戦したいと思います。また、先週の学びも取り入れ、単にデータを加工するだけではなく、具体的に何を調べたいのか、目的は何かをしっかりと意識しながら実践していきます。 グラフ選びの裏側は? なお、今週の事前準備ではヒストグラムを選んだ方が多かったと感じましたが、他のグラフを試してみた方もいらっしゃるのではないかと考えています。

アカウンティング入門

数字で読み解く経営の秘密

売上と利益の意味は? P/Lの構成を復習しながら、大きな数字で示される3つの利益について学びました。具体的には、本業がどれだけ儲かっているかを示す売上総利益、持続的に利益を生み出す可能性を示す経常利益、そして最終的な利益状況を示す当期純利益について、それぞれの意味と重要性を理解できました。特に経常利益の考え方は新鮮に感じ、会社全体の健全性を捉える上で非常に有用だと実感しました。 利益比較の意義は? また、各利益を比較することで、会社内で何が起こっているのかを仮説として立て、その原因を探ることが可能になるとも学びました。こうすることで、将来的に「何をすればよいか」がより明確になり、行動に移しやすくなると感じました。 カフェ事例は何か? 先週の事例に引き続き、今回アキコのカフェの事例を考察することで、経営においてコンセプトをずらさずに継続することの大切さに改めて気づかされました。今後は、さらに多様な商売の在り方についても理解を深めていきたいと思います。 P/L比較の実践は? 具体的には、以下の3点に取り組んでみたいと考えています。 ① 数年間分のP/Lを比較し、会社の状態の経緯や変化を考察する。 ② 仕事に限らず、公開されているデータを利用してさらなる気づきを得る。 ③ 興味のある会社の公開情報を数年分印刷し、比較することで深く理解する。 意見交換の余地は? それぞれが考えたカフェの事例についても、ぜひ意見を聞いてみたいです。

データ・アナリティクス入門

問題解決の視点で成長する方法

何が最優先? 問題解決の考え方では、まず最も重要な問題を特定することが大切です。「何が問題か?」という視点から始め、数値を比較して問題の所在にあたりをつけます。また、理想の計画と現状の未達成状況を把握し、そのギャップを埋める方法を検討します。数値の比較では、見る必要のない範囲を見極めて効率的に分析を進めることも重要です。 現状はどう捉える? 現状把握の際には、問題をさらに深掘りするための切り口を考え、その仮説や優先順位をつけていきます。この過程では定性的な情報も取り入れることが重要です。特に、数値に頼りがちな初期の分析では、仮説の形成において定性的な情報を活用することが印象的でした。 分解して見える? ロジックツリーの層別や変数の分解を用いて課題に取り組むと、目標達成のための具体的な施策が見えてきます。たとえば、採用施設数や売上の向上、コストカットといった課題に対処する際は、変数分解の考え方が役立ちます。また、メーカー推奨品の効果を確認する際には、計画と実績を数値で評価し、感覚的な良し悪しに頼らず客観的に判断することが求められます。 分析の工夫は? 分析を進める際には、「見なくてもよい範囲・数字・切り口」を適切に除外することで、効果的な分析が可能になります。データの切り口についても、何が効果的か考え、必要であれば追加のデータ取得を検討します。また、チームメンバーとアイデアを共有し、他に異なる切り口の可能性がないかを確認することも重要なプロセスです。

クリティカルシンキング入門

数字の背後にある真実を解き明かす方法

数字の背後に何を見いだす? 数字を見る際には、単なる数値を追うのではなく、その背後にどのような事実を見いだしたいかを考え、仮説を立てて分析することが重要です。データを収集する際には、手元にある情報だけでは偏りが出る可能性を念頭に置き、多様な視点から情報を捉えることを心掛けるべきです。 データ分解の鍵は? データを分解する際には、「いつ」「誰が」「どのように」という観点を含め、網羅的に考えることが必要です。そして、本当にその推論が正しいのか、さらなる傾向を2、3考えてみることも重要です。分解して何も見つからなくても、それは失敗ではありません。切り口が不明確な場合は、まず分解を試み、それでわからなかったら特定の傾向がないことを確認することが意味を持ちます。 売上増減の要因は? 売上の増減を分析するときは、顧客や商品ごとに要因を探り、傾向を把握して未来の施策に活かします。過去の傾向に従うだけでなく、今あるデータを新たな視点から見直し、「本当にそうか?」と常に疑問を持ちながら進めることが求められます。 他組織の施策も見直してみますか? 自組織の施策と売上推移を振り返る際には、数値をグラフ化して新たな観点がないかを再考します。他組織の施策や売上推移についても、提示されている視点のみに依存せず、仮説をもって直接問いかけ、新たな傾向を探ります。うまくいっていない事例がある場合は、その要因をチームメンバーとともに分解の視点で考察し、どのように対処すべきかを話し合います。

データ・アナリティクス入門

ひらめき!挑戦の軌跡

問題解決の狙いは? 問題の所在を明らかにするためには、セグメンテーションや条件分けが重要です。まずは層別分解に取り組み、プロセスのどこに弱点があるかを見極めることが求められます。こうすることで、解決策が散漫にならず、問題の本質にフォーカスできます。 仮説はどう洗い出す? 仮説の洗い出しは容易ではなく、思いついたことをそのまま書き連ねても網羅性が得られにくいという課題があります。そこで、まずは核となるアイデアを抽出し、それを一般化したうえで再び具体的な形に落とし込む方法が有効です。さらに、対となるカテゴリも設定することで、フレームワークを活用した仮説の構築が可能になります。 データ活用はどう進む? また、「データドリブン経営」の推進に向けては、必要な検討やデータ収集、分析、結果の共有が事業改善の鍵となります。基礎的な経営結果データを効率的に可視化し、顧客タッチ数などの経営結果を動かすドライバデータを補足することが大切です。これにより、どのような意思決定を行うか、またそれに必要なデータが何かを明確にすることが可能になります。 売上分析のポイントは? さらに、売上分析環境の構築にも注力する必要があります。たとえば、PowerBIを活用すれば、各メンバーが見たい切り口でデータを分析できる環境を整備できます。具体的には、商談数、顧客タッチ数、提案数、商談期間などのデータを取得し、可視化することで、より精度の高い意思決定を支える基盤が構築されます。

クリティカルシンキング入門

受講生のリアルな学び物語

グラフ作成の工夫は? グラフ作成では、データや伝えたい内容に合わせた形式を選び、誰が見ても一目で理解できる工夫をしています。フォントや色、アイコンといった文字表現も、インパクトある印象を与えるために効果的に活用することが大切だと感じました。ただし、過剰な装飾は伝えたいメッセージをかえって曖昧にしてしまうため、バランスを意識する必要があります。 スライド順序はどう? また、スライド全体の構成においては、情報の順番を伝えたいメッセージに沿って並べることが重要です。一言添えることで意図を明確に伝えられるとともに、自分が伝えたい情報ばかりに偏ってしまいがちな点を改善し、常に受け手の視点を意識して作成するよう努めています。 資料作成でアクセントは? 業務推進会議での資料作成では、数字が羅列されただけの売上一覧など、情報を細かく把握しにくい現状を踏まえ、各項目に明確なアクセントを加えることが求められます。グラフや補足メッセージを活用し、全体感や進捗が視覚的に伝わるよう整理する手法は、非常に有効だと考えています。 メール文はどう改善? さらに、動画研修のメールが十分に読まれなかった経験から、受け手に読みたくなる工夫が必要だと改めて感じました。アイキャッチや工夫された件名を取り入れることで、相手の関心を引き、本文に目を通してもらえる可能性が高まると実感しています。今後は、この視点を活かしてより伝わりやすい文章作成に努めていきたいと思います。

クリティカルシンキング入門

データ分析で新発見!視野を広げる方法

データの意外な発見は? 数字を分析する際、単に数値を眺めるだけでなく、以下のような手法を用いることで新しい発見があることを理解しました。まず、グラフ化したりパーセントに変換することが有効です。また、データのグルーピングも年齢帯を変えるなどの工夫が必要です。さらに、複数の切り口から分析し、結果を疑いながら挑み続けることが重要です。 新たな視点は現実? このようなマインドを持つことで、特徴が見えなかったということ自体が「新しい発見」であると理解することができます。そして、新たな切り口が必要だと気づくこともできます。したがって、様々な方法でデータを分解し、分析していくことが脳の考え方をポジティブに変える重要なポイントだと学びました。 数の理由は何だ? 具体的には、「数」を扱う場面が多いため、データを様々な方法で分解し、それぞれの要因を特定していきたいと考えています。例えば、来場者が増えた原因や、顧客が不満を持つプロセス、売上向上の要因を詳細に分析したいと思っています。 多角的視点は十分? 今週中に、現在行っている来場者数の分析を一度見直し、見えているものだけで十分なのか、または他に見えてくるものがあるのかを検討したいと考えています。現時点では、業種や職種、来場日時といった切り口で分析していますが、事前登録の時期やセミナーの申し込み状況、WEBアクセスの頻度など、他にも試すべき切り口が思い浮かぶので、それらを用いて分析を試みる予定です。

データ・アナリティクス入門

データに基づく未来予測の極意

データとは何か? データとは一般的に定量データを意味し、分析とは具体的に要素を分けて整理し、各要素の特性や構造を明確にすることを指します。分析を進める際には、比較対象や基準を設け、それらと比較することが重要です。 データ加工はどう行う? これから学ぶデータも同様に、定量データに焦点を当てます。このデータに応じて、適切な加工法やグラフの見せ方を考える必要があります。たとえば、傾向や頻度を比較する際には縦のグラフが有効で、量の大小を比較する際には横のグラフが効果的です。 分析の目的をどう設定? データ分析を始める前には、【目的】すなわち何のためにデータを分析するのかを明確にし、【仮説】としてどのような項目をどう分析するかをあらかじめ考えておく必要があります。 どんな分析を実施する? 例えば、以下のような内容についてデータ分析を行っていきたいと考えています。 - 優良顧客のデータ分析 - メンテナンス業を伴う機械の交換パーツ分析 - メールマガジン配信後の開封率、クリック測定 - 精度の高い売上予測 - リピート商品の仕組み化に向けた分析 これらの分析によって、例えば上半期の売り上げの高い上位20%の顧客データを抽出し、カテゴリー化することができます。それにより、特定の商品が売れている理由を仮説として考え、その仮説に基づいてキャンペーンメールを配信することで、受注の拡大や新たな分野への展開を図ることが可能になります。

データ・アナリティクス入門

仮説が拓く自分発見の旅

仮説はなぜ重要なの? 仮説を持つことは非常に重要です。物事を早急に結論づけるのではなく、複数の視点から検証し、多角的に物事を捉えることが大切です。 結論への仮説は? 具体的には、結論に向けた仮説と問題解決のための仮説の二種類を考えます。前者は提示された論点に対する仮の答えとして、後者は実際に問題を解決するための道筋として役立ちます。 仮説の意義とは? 仮説を考える意義は大きく三点あります。まず、仮説を立てることにより検証マインドが向上し、説得力のある議論が展開できるようになること。次に、問題に対する関心や意識が高まる点。そして、仮説をもとにした検証プロセスが、最終的な結論に至るスピードアップに寄与することです。こうした仮説検証のプロセスには、アンケートやテストなどの具体的な手順を踏むことが有効です。 なぜ多角的に検証する? また、クライアントのブランドリフトの結果や売上の変動を見た際に、すぐに結論を出さず、なぜその結果が生じたのかを複数の切り口で検証していく必要があります。検証の際は、過去、現在、未来という時間軸に沿って仮説の内容が変化する可能性も考慮することが重要です。 検証の手順はどうなる? まずは情報やデータを収集し、各因子が売上や認知にどのように影響したのかを多角的に検証してください。その手段として、相関分析やヒストグラム、グラフなどによるデータの可視化、さらにはインタビューや簡易調査の実施が効果的です。

マーケティング入門

軸で切り拓く未来の可能性

どんな軸が効果的? ある企業の事例から、商品の仕様を変えることなく新たなターゲットに訴求する際、商品の特徴の中から二つの軸を特定し、ポジショニングマップを検討することが、他社との差別化や自社の強みにつながると学びました。 商品名の魅力は何? また、商品名が持つユーモアや分かりやすさも、商品やサービスの開発において非常に重要であり、場合によっては改名を検討することでターゲットの幅が広がり、売上向上の効果が期待できるという点も印象に残りました。 イベント名はどう響く? 毎年開催している同様のイベントにおいて、イベントタイトルやキャンペーン名称が結果や反響に大きな影響を与えていることを体感しており、企業として二つの軸を十分に考慮し、優位性と顧客からの共感を得られるポジショニングマップを基に企画を打ち出していく必要性を感じました。 顧客の興味は何? さらに、自社が伝えたい魅力や強みだけにこだわるのではなく、顧客が何に興味を持つかという視点を持つことが重要であると考えています。 STPをどう生かす? 加えて、施策ごとにSTP(セグメンテーション、ターゲティング、ポジショニング)を丁寧に実施すること、そして現有のデータだけに頼らず、フレームワークを活用して新しい市場の可能性を探る必要性も強く感じました。また、ターゲティングの評価基準を言語化しながらターゲット選定を行うことによって、運営の質を向上させていきたいと考えています。

「売上 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right