データ・アナリティクス入門

課題解決スキルが劇的に向上する方法とは?

実践による学びの深まり Week1から継続して学び続けた内容を、ライブ授業の演習を通じて「一気通貫」で実施することができ、実践に活用するイメージが具体化しました。特に、仮説は一度立てたら終わりではなく、段階ごとに検証を通じてブラッシュアップしていくこと、また分析は比較であることを強く感じました。さらに、課題解決のプロセスは「What→Where→Why→How」という順序で考えることが重要であると学びました。このプロセスを進める中で、「データのビジュアル化」や「多様な切り口を考えること」の大切さも再認識しました。 課題解決の新たな視点とは? 自分の仕事は基本的に社内の「課題」を解決することが主な業務であり、この講座で学んだ内容はあらゆる場面で活用できると確信しました。これからは、課題解決のプロセス「What→Where→Why→How」を常に意識したいと思います。問題を解決する際には、直ちにデータ分析に取り掛かるのではなく、まず問題の定義から始め、問題点を特定して原因を分析するというプロセスを「事前」に頭の中で描くことが重要です。それにより、無駄な作業やヌケモレを防ぎ、「How」を忘れずに取り組むことが可能です。 事前準備の重要性について 具体的には、すぐに「データ分析」に取り掛からないことを意識的に行い、事前にそれぞれの課題解決プロセスで必要な「タスク」をイメージし、タイムラインを引いて計画を立てることが大切です。最初はしっかりと言語化し、プランをドキュメントに起こしておくことを心がけます。

データ・アナリティクス入門

仮説検証で切り拓く未来

プロセスはどう検証する? 問題の原因を明確にするためには、まずプロセスを分解して検証することが重要です。解決策として、複数の選択肢を洗い出し、しっかりとした根拠に基づいて絞り込む方法が有効だと感じます。 効果はどう比較? A/Bテストでは、施策の効果を比較しながら仮説検証を繰り返します。あらかじめ検証項目を明確に設定し、1要素ずつ検証することが大切です。 データで判断する? データに基づいた意思決定を行うことで、業務の効率化や成果の向上を目指します。日常の仕事の中で仮説を立て、適切なアプローチ方法を模索してきました。過去の経験では、業務過多のため情報共有が主にメールに頼っていた状況もあり、その際はA/Bツールを利用して、理解度や反応の良さといった観点から効果のある方法を試してみました。例えば、メールでの通知と社内共有ドライブへの保管を比較する取り組みが挙げられます。 学びをどう定着? Week5までに多くの分析手法を学びましたが、学んだ内容を自分のものにするためには、メモを振り返りながらフレームワークの活用やデータ加工、さらに比較する際にどのグラフを使用するのが最適かを検討することが必要だと感じています。まずは実践を通じて知識を定着させ、現代ではAIの助けを借りながら調査の時間や手間を省いていきたいと考えています。 新分野はどう理解? また、動画学習を通じてWebマーケティングの指標など新しいエリアにも触れる機会があり、専門外の分野に対する理解がさらに深まったと実感しています。

戦略思考入門

顧客視点での差別化戦略の鍵

顧客視点が重要なのはなぜ? 差別化戦略を考える際には、競合にばかり気を取られず、まず顧客の視点に立つことが重要だと感じます。差別化戦略において「選択と集中」は大切ですが、同時に複数の施策を実行できれば競争力はさらに高まります。環境は常に変化するため、自社の強みも定期的に見直すことが必要です。しかし、特定の強みで大規模な成功を収めた場合、方向転換は難しく、そうした課題に対応できていない企業も多いのではないでしょうか。 海外での専門性はどう活かす? ITベンダーとして国内外で仕事をしていると、国内では顧客の要望に柔軟に対応しますが、海外では専門性がないと認められません。実際には、複数のIT技術を扱うといっても、全てを深く学ぶことは難しく、場合によっては表面的な対応に終わってしまうことがあります。また、若手社員が勉強しても、次の仕事では別のことを任されると思うと、学ぶ意欲を維持しにくく、成長を実感できないことがあるようです。企業も専門性を重視し、業務を外注することで、社内で一貫した比較や統合を行うように変わってほしいですね。私は、そのような姿勢を企業に対し提案していきたいと考えています。 自身の専門性をどう高める? 幅広く知識を習得しつつ、自分が得意とするAIやデータ分析、ソフトウェア工学の分野では積極的に情報発信を行い、自身の専門性をアピールしています。例えば、2月9日にはAIエージェントについて、2月10日にはGraphRAGについての発表を予定しており、これを確実に実施したいと考えています。

データ・アナリティクス入門

データで見つける!チーム改善の極意

目的は何を求める? データ分析において、まず目的を明確にすることが重要です。比較対象や基準を設けて仮説を立て、分析を進めることで、確実な意思決定につなげることができます。また個人的に、円グラフと棒グラフ(縦横)の使い分けが参考になりました。これまでは棒グラフの方向についてあまり意識していませんでしたが、今後は意識的に使い分けていきたいと考えています。 業務はどう進める? 現在、私はR&D部門で営業支援機能の一環として、顧客向けPoC作成や自社商材のクロスセル・アップセル立案を行っています。この中で、KPIの進捗率が良いチームと悪いチームが存在します。進捗率の悪いチームに対し、原因を分析してどのような支援が必要かを検討するための材料とする予定です。講義を受け、現在の業務の大半が定性的な要素に支配されていることに気づきましたが、これらも定量的なデータとして取得可能であることに今後注力していきたいと考えています。 指標はどこを確認? 具体的には、目的を「進捗率の良いチームと悪いチームの差分を捉え、悪いチームのパフォーマンス改善につなげる」と設定しました。KPI管理している指標の前段階にある要素をロジックツリーで再度分解し、KPI設定に漏れがないか確認します。この過程で、数値データを得るための手法を考え、進捗率の良いチームと悪いチームへ調査を行って数値を取得します。同じ条件のデータ同士で比較して差分を捉え、数値的な差異からどのポイントで躓いているかを特定し、支援方法の検討につなげます。

データ・アナリティクス入門

課題解決のためのアプローチ学びました

どの要素に焦点を当てるべきか? 問題解決のためには、What、Where、Why、Howの各要素に分けて進めるアプローチが重要だと学びました。単に数字を眺めるだけでは見えにくい情報も、プロセスごとに分けて考え、それを定量化 (例えば、ファネル分析やコンバージョン率) することで新たな課題が明らかになります。 仮説立案のコツとは? また、問題の原因を探る際には仮説を立てることが鍵です。その際の思考範囲を広げるために、対となる概念である「対概念」が有効であることも学びました。分析を進める上では、条件を揃えることが重要で、いわゆるApple to AppleとするためにA/Bテストを行い、比較対象の違いを絞り込むことが必要です。原因を探る際には、多くの項目に手を広げず、仮説を絞り込んで十分に研ぎ澄ますことが求められます。 システム導入の目的をどう明確にする? これからシステムを導入するにあたり、まずシステムが何のために必要かを明確にし、その問いを検討段階から関係各所と共有しながら進めることが大切です。そして、現状における問題の特定を行い、What、Where、Why、Howの各要素に分けて進めていきます。 比較分析のためには? システムの導入においては、何を比較するのかを明確にし、例えば導入した場合と導入しなかった場合の比較や、複数社での比較を行います。また、現状とあるべき姿のギャップを定量的・定性的に描き出し、比較することが重要です。場合によっては仮説を立てて進めることも効果的です。

アカウンティング入門

P/Lから学ぶ!儲けの本質と経営戦略

P/Lの基本はどうなってる? P/Lを読み解こうとする際に、細かなことまで把握しようとしていましたが、売上と5つの利益をざっくり掴むことが重要であると知り、精神的に楽になりました。その理解をスタートにすることで、会社の状態、すなわちどのように儲けたのか(本業かそれ以外か)、何にお金がかかったのか(原価か販管費か、一時的なものか)を把握するのに非常に効果的だと実感しました。 カフェ経費はどう捉える? ミノルさんのカフェ事業を例に考えた時、コーヒー豆の原価や店舗運営にかかる費用はイメージできました。しかし、上質なサービスを提供するために必要な熟練スタッフの人件費まで考えが及びませんでした。贅沢な時間を提供するのか、日常的にリラックスできるひとときを提供するのかによって、雇うスタッフや研修費用が変わることに気づき、これは貴重な学びでした。 来期計画はどう進む? 来期の事業計画を立てるにあたって、今期までの利益構造を理解し、どう進めるべきか考えることに役立てようと思います。原価削減に向けては、何をどれくらい削減すれば効果的かをシミュレーションして把握し、利益を増やすためにどれだけ情報資産を活用すべきか計算し、イメージを持っておきます。 実践のポイントは何? 11月を通して、次の3点を実践します。まず、自社のP/Lを現在から過去10年遡って、売上と5つの利益を比較します。次に、来期の事業計画で削減すべき原価を明確にします。そして、取引先上場企業5社のP/Lを過去3年間遡って比較してみます。

マーケティング入門

イノベーション成功の鍵:顧客視点の大切さ

イノベーション普及に必要な要素とは? 新商品が普及するためには、イノベーションの普及要件が欠かせないと感じました。具体的には【比較優位】(従来のアイデアや技術に比べた優位性)、【適合性】(生活に大きな変化を強いると採用が難しい)、【わかりやすさ】(使い手にとっての易しさ)、【試用可能性】(実験的な使用が可能)、そして【可視性】(周囲から新しいアイデアや技術の採用が観察できる)といった要素が重要です。これらの要素を理解し、考慮することが必要ですが、何よりも顧客の立場に立って考えることが重要だと痛感しました。 顧客イメージの重要性 さらに、顧客が持つイメージの重要性についても深く理解しました。現在、自社や自部署が行っているバックオフィス業務の効率化を考えた際に、店舗や他の部署へ仕組みの変更を依頼する場面があったのですが、これは今週学んだことを活用する良い機会だと考えました。特に、「適合性」と「わかりやすさ」の視点を忘れがちであることを自覚しました。新商品を成功させるだけではなく、顧客の視点に立ってこうした要素がしっかりと実現されているかを考え、業務設計を行いたいと思います。 仕組み変更時にどう対応する? 具体的に店舗に仕組みの変更を依頼する場合には、相手の立場に立って考え、行動することが重要です。その変更が本当に双方にとってプラスとなっているのか、また、相手が外部の企業であった場合、自社のサービスに対して支払いをしたいと思ってもらえるのかといった視点を持って判断していくべきだと感じています。

アカウンティング入門

企業財務に秘めた学びの発見

P/LとB/Sはどう見る? 業種によって、P/LおよびB/Sの構造が大きく異なります。売上原価や販管費も、事業が提供する価値に応じて変化します。例えば、ある企業では、従業員が主要な提供価値となるため、人件費が売上原価に含まれています。つまり、どのような資産を保有し、どのような投資を行ったかをB/Sで確認し、その結果P/L上でどれだけのコストがかかり、どれだけの利益が出ているのかを理解することができます。事業内容と財務情報が密接に結びつく点が、非常に興味深いと感じました。 意外な学びはどこ? 自分が関わっている領域ではイメージしやすかったものの、関わりの少ない分野については新たな発見も多く、理解を深める良い機会となりました。AIを活用して主要な事業ごとのビジネスモデルや収益の特徴を整理することで、概念をしっかりと把握できたと感じます。今後は、代表的な企業の財務諸表を実際に見ながら、更なる理解の深化を目指していきたいと思います。 大事な視点は? また、以下のような視点も重要だと考えます。 決算報告は何を示す? まず、第二四半期の決算報告が自社だけでなく他社も発表しているため、これを比較検討することが有意義です。自社のP/Lの変化を、同四半期に実施した施策(提供価値の向上、投資、資産状況など)と照らし合わせて理解を深めることが求められます。 今後の戦略はどうする? 次に、自社の今後のP/L状況を予測し、戦略の変更や追加施策の必要性について検討することが大切だと感じています。

データ・アナリティクス入門

ロジックツリーで紡ぐ成長の軌跡

原因特定で悩む? 問題解決のためには、「WHAT」「WHERE」「WHY」「HOW」の4つのステップで整理すると良いと感じました。私は特に「WHERE」の段階、つまり「原因の特定」に偏りがあったように感じますが、今後は「状況把握」や「解決策」に関しても仮説を立て、ロジックツリーを使って可視化するようにしたいと思います。一度有効だと考えた仮説に固執せず、全体を整理し直す柔軟な姿勢を大切にしていきたいです。 人事課題に挑む? 人事課題では、正解がない問題が多く、一般論や他社の傾向と自社の実情が必ずしも一致しない場合があります。そんな中で自分が立てた仮説やその結論を明確にするため、ロジックツリーを作成しながら取り組んでいくことが重要だと感じました。また、これまで属性ごとに人事データを層別分解してきたものの、変数ごとの解釈が不足していたため、状況に応じてさまざまな角度から仮説の検証を行えるように努めたいと思います。 本当の問題は? まずは、目の前のデータに頼るのではなく、何が本当の問題なのかを明確にするための仮説を立て、その仮説をロジックツリーのような形で整理していきます。現状のデータだけでなく、どんなデータがあればより適切な比較ができるかを考え、必要であればデータを収集できる体制を整えることにも注力していきたいです。 検証の進め方は? 最後に、実際にデータを使って仮説を検証する際には、ログを残すことや、時間や状況の違いを比較することを意識しながら、着実に分析を進めていく所存です。

戦略思考入門

見える化で挑むコスト改革

学びで何が変わった? 今週は、規模の経済性、習熟効果、範囲の経済性について学びました。これらはコスト削減に役立つという認識は以前からありましたが、具体的に言葉にして整理されることで、より実感できるようになりました。また、効果が見られない場合もあるという説明を受け、自分自身がその点に気づいていなかったことを再認識しました。 ネット効果をどう見る? また、過去にゲーム業界、現在はIT業界にいるため、ネットワーク経済性に関しては日常的に意識する場面が多いですが、今回の学びにより、普段はあまり意識していなかった部分も含めて、再確認することができました。 固定費削減の秘訣は? 私の所属する会社はデータ分析をビジネスの柱としており、これまで競合が比較的少なく、専門職であったため高コストでも許容されていました。しかし、最近ではLLMやAIエージェントの登場で、専門職に限定されない業務も増えているため、差別化戦略を検討する一方で、コスト削減が重要な課題となっています。いかに固定費を下げ、売上や利益を向上させるかが喫緊のテーマとなっており、今回の学びは具体的な施策を検討する際の重要な軸として活用していこうと考えています。 可視化で議論進む? 今後は、各施策にフレームワークを適用して抜け漏れがないか、また見落としているメリットやデメリットがないかを整理し、可視化していく予定です。上司とのディスカッションは口頭で進むことが多いため、こうした可視化を通じて議論をより明確に進めていきたいと思います。

アカウンティング入門

お金の流れで読み解く成功のカギ

B/Sの役割は? 貸借対照表(B/S)は、企業のお金の使い道と調達方法を双方から確認できる重要な資料で、企業の骨組みがしっかりしているかという意味で、健全な状態を示しています。 P/Lの秘密は? 一方、損益計算書(P/L)は会社の儲けを表しますが、その儲けを生み出すためにどのように資金が使われ、調達されたかをB/Sで把握するのです。 B/S読み解きは? また、B/Sを読み解く際には、企業のビジネスモデルや提供する価値を意識することが大切です。つまり、必要な経営資源が何であるか、そしてどのように資金を調達するかを、ストーリーとして考える必要があります。 自社分析はどう? 自社のB/Sを競合他社と比較し、資金の使い方や調達方法における自社の特徴を整理することにより、より戦略的な資金運用が可能になると感じています。 カフェ投資の意義は? 教材の事例として取り上げられたカフェの初期投資では、提供価値を踏まえ、必要な固定資産へ重点的に資金を投入する方が効果的だという結論に至りました。自社の場合、広告宣伝費や工場の設備投資など、どこに資金を向けるかをこのカフェの事例と照らし合わせながら考えてみることが有意義だと思います。 失敗から学ぶ? さらに、資金の使い方と調達方法において失敗した事例から学ぶことも重要です。具体的な金額の決め方や負債の判断基準がまだ十分にイメージできていないため、失敗例からどのような判断が誤っていたのかを把握し、今後の改善に活かしたいと考えています。

データ・アナリティクス入門

仮説が導く多角的学びの扉

仮説はどう考える? 仮説を考える際は、決め打ちにせずに複数の視点から仮説を立てることが大切です。仮説同士に網羅性を持たせるため、異なる切り口で検討を行い、検証時には何を比較基準にするかを意識的に選ぶようにしましょう。 データはどう集める? データを収集する際には、対象者が意味のある情報源であるか、またどのような方法(アンケート、口頭など)で情報を得るのかを考慮してください。比較対象となるデータを収集することを忘れず、都合の良い情報だけでなく、反論となる情報も取り入れて検証するように意識します。 仮説はどう分類? 仮説は、目的に応じて「結論の仮説」と「問題解決の仮説」に大きく分類され、時間軸(過去・未来・将来)によってその中身は変わっていきます。 過去データで発見? たとえば、過去に掲載していた販売サイトのアクセス数やコンバージョン率を再確認することで、当時気づかなかった新たな発見が得られるかもしれません。担当していなかった時期のデータでも、改めて見返すことで仮説を生み出す練習ができます。また、メールマガジンのクリック率や流入ページ、ページビュー数なども注目すべき指標です。 多角的検討は必要? これまで、思いついた仮説に合致する情報を優先的に探していたかもしれませんが、仮説が決め打ちにならないよう、複数の視点から網羅的に検討する意識が求められます。What、Where、Why、Howの各要素に落とし込んだうえで、プロセス通りに漏れなく検討していくことを心がけましょう。

「比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right