アカウンティング入門

企業財務に秘めた学びの発見

P/LとB/Sはどう見る? 業種によって、P/LおよびB/Sの構造が大きく異なります。売上原価や販管費も、事業が提供する価値に応じて変化します。例えば、ある企業では、従業員が主要な提供価値となるため、人件費が売上原価に含まれています。つまり、どのような資産を保有し、どのような投資を行ったかをB/Sで確認し、その結果P/L上でどれだけのコストがかかり、どれだけの利益が出ているのかを理解することができます。事業内容と財務情報が密接に結びつく点が、非常に興味深いと感じました。 意外な学びはどこ? 自分が関わっている領域ではイメージしやすかったものの、関わりの少ない分野については新たな発見も多く、理解を深める良い機会となりました。AIを活用して主要な事業ごとのビジネスモデルや収益の特徴を整理することで、概念をしっかりと把握できたと感じます。今後は、代表的な企業の財務諸表を実際に見ながら、更なる理解の深化を目指していきたいと思います。 大事な視点は? また、以下のような視点も重要だと考えます。 決算報告は何を示す? まず、第二四半期の決算報告が自社だけでなく他社も発表しているため、これを比較検討することが有意義です。自社のP/Lの変化を、同四半期に実施した施策(提供価値の向上、投資、資産状況など)と照らし合わせて理解を深めることが求められます。 今後の戦略はどうする? 次に、自社の今後のP/L状況を予測し、戦略の変更や追加施策の必要性について検討することが大切だと感じています。

マーケティング入門

仲間と実感!マーケの力

マーケティングとは何だろう? 改めて「マーケティング」とは何かを問われた時、漠然とした認識やイメージしか持っていなかったことに気づきました。しかし、仲間や上司と開発、改善、販促活動について話す中で、情報の整理やイメージのすり合わせがいかに大切かを再認識しました。 なぜセリングに偏る? これまで、自社では比較的セリング寄りの販促活動を行っていたと感じます。とはいえ、年間売上目標がある中では、ついセリング思考に戻りがちです。そのため、あえてマーケティング思考を意識し、その習慣を身につける必要があると考えています。 シフトの理由は? 今年度からは、マーケティングに基づいた販促活動および経営活動へとシフトしていく方針です。ミーティング時なども、セリング的な発想に偏っていないか、顧客志向が抜け落ちていないかをメンバーと再確認しながら、活動を進めていきたいと思います。 改善点はどこ? また、業務委託先でのサービス改善に関しては、既存のサービスの良さや価値と顧客ニーズとの間にギャップがないかを整理し、取り組むべき事項の決定とその優先順位を検討することが求められています。 売れる理由は? さらに、販促活動において気になる点や提案があれば、積極的にミーティングで仲間に共有し、質問や提案を行っています。既存サービスの改善提案を進める中でもマーケティング思考を意識し、なぜその商品やサービスが売れているのかという理由を考える習慣を持つよう、常にアンテナを張り、メモを取るように努めています。

アカウンティング入門

お金の流れで読み解く成功のカギ

B/Sの役割は? 貸借対照表(B/S)は、企業のお金の使い道と調達方法を双方から確認できる重要な資料で、企業の骨組みがしっかりしているかという意味で、健全な状態を示しています。 P/Lの秘密は? 一方、損益計算書(P/L)は会社の儲けを表しますが、その儲けを生み出すためにどのように資金が使われ、調達されたかをB/Sで把握するのです。 B/S読み解きは? また、B/Sを読み解く際には、企業のビジネスモデルや提供する価値を意識することが大切です。つまり、必要な経営資源が何であるか、そしてどのように資金を調達するかを、ストーリーとして考える必要があります。 自社分析はどう? 自社のB/Sを競合他社と比較し、資金の使い方や調達方法における自社の特徴を整理することにより、より戦略的な資金運用が可能になると感じています。 カフェ投資の意義は? 教材の事例として取り上げられたカフェの初期投資では、提供価値を踏まえ、必要な固定資産へ重点的に資金を投入する方が効果的だという結論に至りました。自社の場合、広告宣伝費や工場の設備投資など、どこに資金を向けるかをこのカフェの事例と照らし合わせながら考えてみることが有意義だと思います。 失敗から学ぶ? さらに、資金の使い方と調達方法において失敗した事例から学ぶことも重要です。具体的な金額の決め方や負債の判断基準がまだ十分にイメージできていないため、失敗例からどのような判断が誤っていたのかを把握し、今後の改善に活かしたいと考えています。

データ・アナリティクス入門

仮説が導く多角的学びの扉

仮説はどう考える? 仮説を考える際は、決め打ちにせずに複数の視点から仮説を立てることが大切です。仮説同士に網羅性を持たせるため、異なる切り口で検討を行い、検証時には何を比較基準にするかを意識的に選ぶようにしましょう。 データはどう集める? データを収集する際には、対象者が意味のある情報源であるか、またどのような方法(アンケート、口頭など)で情報を得るのかを考慮してください。比較対象となるデータを収集することを忘れず、都合の良い情報だけでなく、反論となる情報も取り入れて検証するように意識します。 仮説はどう分類? 仮説は、目的に応じて「結論の仮説」と「問題解決の仮説」に大きく分類され、時間軸(過去・未来・将来)によってその中身は変わっていきます。 過去データで発見? たとえば、過去に掲載していた販売サイトのアクセス数やコンバージョン率を再確認することで、当時気づかなかった新たな発見が得られるかもしれません。担当していなかった時期のデータでも、改めて見返すことで仮説を生み出す練習ができます。また、メールマガジンのクリック率や流入ページ、ページビュー数なども注目すべき指標です。 多角的検討は必要? これまで、思いついた仮説に合致する情報を優先的に探していたかもしれませんが、仮説が決め打ちにならないよう、複数の視点から網羅的に検討する意識が求められます。What、Where、Why、Howの各要素に落とし込んだうえで、プロセス通りに漏れなく検討していくことを心がけましょう。

データ・アナリティクス入門

ロジックツリーで紡ぐ成長の軌跡

原因特定で悩む? 問題解決のためには、「WHAT」「WHERE」「WHY」「HOW」の4つのステップで整理すると良いと感じました。私は特に「WHERE」の段階、つまり「原因の特定」に偏りがあったように感じますが、今後は「状況把握」や「解決策」に関しても仮説を立て、ロジックツリーを使って可視化するようにしたいと思います。一度有効だと考えた仮説に固執せず、全体を整理し直す柔軟な姿勢を大切にしていきたいです。 人事課題に挑む? 人事課題では、正解がない問題が多く、一般論や他社の傾向と自社の実情が必ずしも一致しない場合があります。そんな中で自分が立てた仮説やその結論を明確にするため、ロジックツリーを作成しながら取り組んでいくことが重要だと感じました。また、これまで属性ごとに人事データを層別分解してきたものの、変数ごとの解釈が不足していたため、状況に応じてさまざまな角度から仮説の検証を行えるように努めたいと思います。 本当の問題は? まずは、目の前のデータに頼るのではなく、何が本当の問題なのかを明確にするための仮説を立て、その仮説をロジックツリーのような形で整理していきます。現状のデータだけでなく、どんなデータがあればより適切な比較ができるかを考え、必要であればデータを収集できる体制を整えることにも注力していきたいです。 検証の進め方は? 最後に、実際にデータを使って仮説を検証する際には、ログを残すことや、時間や状況の違いを比較することを意識しながら、着実に分析を進めていく所存です。

戦略思考入門

見える化で挑むコスト改革

学びで何が変わった? 今週は、規模の経済性、習熟効果、範囲の経済性について学びました。これらはコスト削減に役立つという認識は以前からありましたが、具体的に言葉にして整理されることで、より実感できるようになりました。また、効果が見られない場合もあるという説明を受け、自分自身がその点に気づいていなかったことを再認識しました。 ネット効果をどう見る? また、過去にゲーム業界、現在はIT業界にいるため、ネットワーク経済性に関しては日常的に意識する場面が多いですが、今回の学びにより、普段はあまり意識していなかった部分も含めて、再確認することができました。 固定費削減の秘訣は? 私の所属する会社はデータ分析をビジネスの柱としており、これまで競合が比較的少なく、専門職であったため高コストでも許容されていました。しかし、最近ではLLMやAIエージェントの登場で、専門職に限定されない業務も増えているため、差別化戦略を検討する一方で、コスト削減が重要な課題となっています。いかに固定費を下げ、売上や利益を向上させるかが喫緊のテーマとなっており、今回の学びは具体的な施策を検討する際の重要な軸として活用していこうと考えています。 可視化で議論進む? 今後は、各施策にフレームワークを適用して抜け漏れがないか、また見落としているメリットやデメリットがないかを整理し、可視化していく予定です。上司とのディスカッションは口頭で進むことが多いため、こうした可視化を通じて議論をより明確に進めていきたいと思います。

データ・アナリティクス入門

実践×代表値:新たな視野をひらく

代表値の種類は何? 分析や比較を容易にするためのデータ加工の方法について学びました。まず、代表値として単純平均、加重平均、幾何平均、中央値の4種類があること、また散らばりを表す指標として標準偏差(分布も含む)があることを理解しました。これまでの業務では単純平均と中央値を主に使用していたため、各数字に重みを付ける加重平均や、全データを掛け合わせる幾何平均を知ったことで、数値の見せ方に新たな視点を持つことができ、とても興味深く感じました。さらに、ローデータからグラフ化する際に、各代表値ごとの違いを意識することで、より適切なグラフやビジュアル表現が可能になると感じました。 業務評価の新手法は? 直近の業務では社内アンケートを実施する予定があり、満足度などの評価数値に対して、従来の単純平均や中央値に加え、主要ターゲット層の受講率を掛け合わせた加重平均も算出してみたいと考えています。これにより、より実態に即した評価ができると期待しています。 エクセル関数はどう組む? 一方で、各代表値の意味は理解したものの、エクセル上で関数をどのように組むかについてはまだ確認が十分ではありません。特に、幾何平均で平方根が出てくる点については苦手意識がありますので、ミスなく計算できるように仕組み化できないか振り返りたいと思います。また、2SDルールについては基本的な理解はあるものの、具体的にどのように活用すべきかというイメージが定まっていないため、いくつか事例を確認して今後の活用方法を模索していく予定です。

クリティカルシンキング入門

視野を広げるクリティカルシンキングの力

クリティカルシンキングとは? クリティカルシンキングとは、物事を適切な方法で適切な深さまで考えるスキルです。これを身につけるための基本原則は、常に目的を意識すること、自他の思考の癖を前提に考えること、そして問い続けることです。 思考の癖を広げるには? 思考の癖については、個人的な視点だけでなく、視野や視座を広げることが大切です。自分の経験だけでなく、様々な視点から物事を考え、どのような場面で誰に何が必要なのかを検討することが求められます。 顧客対応で重視すべき点は? 具体例として、顧客への見積(価格)説明のシーンがあります。この際、価格の根拠を示すよう依頼されることがしばしばありますが、単に自社の工数を理由として説明するだけでは不十分です。どの点を顧客が懸念しているのか深堀りすることが重要で、こうした場面でクリティカルシンキングは非常に有効です。たとえば、顧客が金額に納得していない理由として、予算がないのか、上司への説明が必要なのか、または他の案件と比較して高いのかなど、様々な可能性を探るべきです。 効果的な会議運営を目指す 迅速な対応としては、顧客の依頼に対し、その目的を明確に理解するために質問を行うことが重要です。顧客の思考が偏っている可能性もあるため、問い続ける姿勢を持ちましょう。また、会議を開催する際には目的を明確にし、効率的な進行を実施します。参加者に特有の思考の癖がある場合は、視野を広げるように客観的な誘導を行うことで、より良い議論が可能になります。

データ・アナリティクス入門

平均だけじゃ語れないデータの魅力

平均値だけじゃない? データを可視化する際、平均値を中心に考えがちですが、加重平均や幾何平均といった別の手法も存在し、目的に応じて使い分けが必要だと改めて感じました。また、平均値は外れ値の影響を受けやすいため、標準偏差での比較やグラフを用いて全体のばらつきにも注目することが重要であると学びました。 ヒストグラムの理由は? 年齢分布のグラフについては、ヒストグラムを選択しましたが、その理由が十分に明確にできていなかったと感じています。なぜヒストグラムが最適なグラフであるのか、今後は選択した理由を具体的に説明できるようにしていきたいと思います。 指標の選択は? 過去データとの比較を行う際、単純平均や割合のみに頼るのではなく、数値の規模やばらつきも考慮して加重平均や幾何平均、さらには中央値など、複数の指標を取り入れる必要があると再認識しました。 仮説思考はどう? また、データ分析のプロセスにおいて、これまであまり意識していなかった作業の流れを見直し、今回学んだ「仮説思考のプロセス」を参考に、目的を明確にし仮説を立てながら作業を進めていくことが大切であると感じました。 資料のまとめ方は? さらに、分析データを資料にまとめる際には、記載している数値(代表値)がどのようなものなのか、またどのようにグラフ化しているのかを明確にすることが求められると考えています。業種によっても適切な可視化方法が異なるため、差し支えない範囲でその違いを把握し、説明できるよう努めたいと思います。

クリティカルシンキング入門

データ分析の一手間で見える世界

データをどう加工すべきか? 与えられたデータをどのように加工すればよいか、その考え方を学ぶことができました。大切なポイントは以下の3つです: 1. 与えられた表をそのまま見るのではなく、まず加工を考える。 2. 絶対値ではなく相対値でもデータを見る。 3. 一手間加えてグラフ化し、視覚的にわかりやすくする。 データ分析の仮説立て方とは? これらを実行する上で重要なのは、仮説を立ててデータを分解することです。特に、MECE(漏れなくダブりなく)な分解を習得することが求められます。 可視化で何を達成できる? 私は、売上や営業スタッフ一人ひとりの実績やシェアを見ることが多く、その際にフィードバックを行う機会があります。ただ結果を振り返るだけでなく、もう一歩踏み込んだフィードバックができるように、データを可視化したいと考えています。可視化する際には、様々な切り口でデータを分解し、仮説を立てて分析します。もし仮説が結果に結びつかなくても、トライ&エラーを繰り返して原因を追求します。 今後の目標は? 今後の目標は以下の通りです: - 毎月の数字の振り返りの際に、特定エリアの商圏分析と購買年齢層を比較し、問題の明確化と特定を行い、さらに原因追求のプロセスを明確化する習慣をつける。 - 営業スタッフへの数字振り返り資料を、次回の会議時にはグラフ等を用いて改訂してみる。 - 月間の実績確認において、各カテゴリーごとにチェックするだけでなく、その都度気になる切り口でMECE分解を行う。

データ・アナリティクス入門

数字が語る学びの物語

データ全体像は? データ比較や数値化、数字に集約して捉える方法、さらには視覚的および数式を通じて関連性を把握する手法について学び、大変参考になりました。これにより、データの全体像を把握しやすくなると感じています。 平均の違いは? 目的に応じて、単純平均だけでなく、加重平均、幾何平均、そしてはずれ値に対応する中央値など、さまざまな平均値の使い分けが有用であると再認識しました。数字を分析する際、データの中心値と散らばりを考えるアプローチは非常に重要です。 標準偏差はどう? 特に、これまであまり意識してこなかったデータのばらつき、すなわち標準偏差の理解については、自己学習が必要だと思いました。今回の学習を通して、データ分析においてばらつきの考慮が結果に与える影響の大きさに気付きました。 実践はどう進む? 今後は、学んだ知識を生かし、エクセルを活用してグラフ化するなど、実践的なアプローチに取り組んでいきます。また、どのデータを分析するかはまだ模索中ですが、さまざまな場面で応用できるよう、引き続き自己研鑽を積んでいく予定です。 難解概念の壁は? 一方で、「平方根」、「標準偏差」、および「正規分布と2SD」といった概念は難解に感じたため、これらの理解を深めるためにさらなる学習が必要だと感じました。また、過去に業務で使った経験がある「幾何平均」についても、当時はあまり考えずに対応していたため、Raw dataを見直しながら基礎から再確認していきたいと考えています。

データ・アナリティクス入門

数字とグラフで解くデータの真実

数値分析のコツは? データ分析を行う際、基本的には「数字で見る」、「グラフなどを用いて目で見る」、「数式で検証する」の三つの方法が考えられます。まず、数字で見る方法では、代表値を使って分析を進めますが、単純平均だけではデータのばらつきを十分に捉えられないため、加重平均や幾何平均、中央値、標準偏差なども併用する必要があると感じました。 視覚的解析はどう? 次に、グラフなどを使って視覚的にデータを確認する手法については、棒グラフや分布図などを活用し、データのばらつきや傾向を直感的に把握できる点が有効だと思います。数字での比較に加え、視覚的に情報を整理することで、人間の「感覚」を補助的な指標として利用することが可能となります。 財務分析を見極め? 特に財務分析などでは、年度ごとの数値を並べて差異を示す資料に留まることが多いですが、グラフを併用することで推移が一目で分かり、結論の共有も容易になります。しかし、誤った手法を用いると分析結果自体が誤解を招く危険性もあるため、注意が必要だと実感しました。 今後の改善点は? 今回の学習を通して、様々なアプローチでの分析の重要性や、人間の感覚も一つの有用な指標となり得ることを再確認しました。もし分析結果に疑義が生じた場合は、他の指標を用いて再度分析を試みるなど、工夫が求められると感じています。また、実際の業務においては標準偏差などがあまり用いられない現状もあり、各自の業務でどのような指標を適用するか、今後の課題として考えたいと思います。
AIコーチング導線バナー

「比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right