データ・アナリティクス入門

未来を切り拓く!仮説思考の力

仮説はどう整理する? 複数の仮説を立てる際には、その網羅性と分類が重要です。過去の失敗を分析する場合や、将来の事業の成功を予測する場合には、3Cや4P分析を活用して仮説を立ててみると良いでしょう。 データ収集はどうする? 仮説を裏付けるためのデータは常に存在するわけではありません。必要な情報を収集する場合、誰に何をどのように聞くべきかを慎重に考える必要があります。都合の良い情報だけを集め、他の可能性を排除しないようにする意識も大切です。この姿勢は「関心や問題意識のないところに仮説は生まれない」というマインドセットにも通じています。 市場特性の見極めは? 3Cや4Pの視点で現在のビジネス状況を正しく理解することが不可欠です。しかし、市場や業界、製品が特殊な場合には注意が必要です。例えば、医療業界ではエンドユーザーが患者であり、購入決定権を持つのは医療者であるケースがあります。広告制限のある製品については、適切な顧客設定と検証が必要です。自社だけでなく、関わるグループ施設市場を含めた3C、4P分析も有効です。 3W1Hで速さは向上? 仮説の3W1Hを繰り返すことでビジネススピードが向上します。過去と未来の仮説を分けて分析し、サイクルを回すことが必要です。たとえば、大型コンペの参加が有効だったか、その前後の効果や成功の分析、次回の見込みや採用率の変化が周囲に与える影響の予測を行います。 Excel作業改善のコツは? データの比較基準が異なる場合、データの取得、加工、単位や見え方の統一が課題になります。実際の分析開始前の準備段階でのExcel作業に多くの時間を費やすことが課題となっているため、この点のスキルアップが必要です。

データ・アナリティクス入門

比較で深めるデータ分析の極意

比較で何が見える? WEEK1で学んだことにより、分析の基本は比較であるという理解が深まりました。例えば、A/Bテストでは、可能な限り条件を揃えた上で変更点を明示し、仮説を試すことによって、収集データの精度が向上します。これにより、データを活用した問題解決の要因分析と解決策の選択に深みが出てくると考えられます。 問題解決の流れは? 問題解決のステップには以下の要素があります。まず、問題箇所を明確化し(what)、次にその箇所を特定します(where)。続いて、原因を分析し(why)、最後に解決策を立案する(how)という流れです。特に重要なのは、whyでプロセスを細分化し、howでは複数の選択肢を洗い出して根拠に基づき絞り込むことです。 A/Bテストはどう? 手段としてのA/Bテストは、A案とB案を比較するためのテストで、できるだけ条件を揃えて比較対象を明確にすることが肝心です。このテストを用いて、データ分析の精度を高め、より良い問題解決に繋げることが可能です。 提案の工夫は? 私の業務ではWebマーケティングのような高速な仮説検証はできないものの、提案を行う際には、条件を可能な限り統一したプランAやプランBを提示し、違いを明瞭にするよう努めています。これにより、提案内容をブラッシュアップし、上長の意思決定のポイントを把握することができます。 予算説明の極意は? また、近々、来年度の予算計画について上長に説明する機会があります。その際は、過去のデータの傾向を踏まえて、変動の大きい部分を中心に複数のプランを提示します。プラン間の違いを明確にし、上長の意思決定を理解することで、計画の精度を高めていきたいと考えています。

データ・アナリティクス入門

データ分析の魅力に気付く学びの旅

データ分析の目的と仮説設定 データ分析においては、「目的」や「仮説」の設定が極めて重要です。解決したい問題を明確にし、まず結論のイメージを持つことが大切です。問題解決のステップをたどる際には、何が問題で、どこで問題が発生しているのか、なぜ問題が発生しているのか、そしてどのように解決策を実行するのかを考えます。そのため、データ分析は比較対象を明確にし、もし検証データがなければ用意する必要があります。 データ収集と加工の要点は? データを収集する際には、検証に不要な情報を極力除くことが重要です。集めたデータを元に、明らかにしたいことを基にデータを加工します。この際、実数と率の両方を確認することが必要です。また、やみくもに分析するのではなく、ストーリー性を持たせ、傾向を把握し、特に注目すべき箇所を明確にすることが求められます。 仮説検証で注意すべきポイント 仮説検証においては、可能性のある原因を網羅的に仮説として挙げ、そのうち原因である可能性が高い仮説を検証します。解決したい問題を明確にし、結論のイメージを持つことが再度重要になります。検証するためのデータがない場合は、担当部署に協力を求め、データを用意することが求められます。用意したデータは実数と率のグラフで表現し、新たな発見を見つけることを目指します。ただし、やみくもな分析は避けるようにしましょう。 視覚的表現の重要性とは 常に実数と率のグラフを頭の中で描くように心がけ、色々なグラフでデータを視覚的に表現することで、新たな気付きがあるかもしれません。このようにデータ分析においては、明確な目的と仮説、適切なデータの収集と加工、そしてストーリー性を重視することが重要です。

データ・アナリティクス入門

統計で読み解く学びの軌跡

代表値の意味は何? データを理解するためには、代表値と散らばりに注目することが大切だと学びました。代表値については、これまで単純平均や中央値が中心だと思っていましたが、加重平均(重みづけを行う)や幾何平均(売上成長率の計算などに用いる)もあることを知りました。 散らばりの特徴は? また、データの散らばりを把握するためには標準偏差が有効です。標準偏差の値が大きいほどデータのばらつきが大きいことが示され、散らばりをグラフにすると中央が高い釣り鐘型になるのが一般的です。大部分の値は標準偏差の2倍以内に収まるとされ、これを2SDルールと呼びます。この考え方は、日本人男性の平均身長とそのばらつきを求める具体例で非常に分かりやすかったです。 業務で活かすポイントは? 業務面では、意識調査で入社年次のデータが取得できた際に、標準偏差を使ってデータのばらつきを確認してみたいと考えています。社内教育の理解度確認にも、標準偏差が有用であると思いました。 他部署での応用は? さらに、別部署で実施している顧客アンケートの分析においても、今回学んだ知識が応用できそうです。たとえば、寄せられた意見をカテゴライズして、売上に応じた加重平均を算出することで優先すべき意見を抽出できると感じました。また、幾何平均を用いることで、翌年度の予測も立てられるのではないかと考えています。 今後の展開はどう? 今後、6月末に予定している社内教育のアンケート分析では、理解度の散らばりを明らかにするために標準偏差を調べるつもりです。そして、業務分担の変更が見込まれる中で、顧客アンケートの分析にも加重平均や幾何平均を活用し、前年度データとの比較検証を行う予定です。

アカウンティング入門

運動成績に学ぶPLの極意

大局をつかむには? 損益計算書(PL)の読み方について学び、細かい項目に注目するよりは、大局をつかむことが大切だと理解しました。具体的には、売上や利益の動向に注目して読み解く方法がポイントです。特に、以下の3点に注意することが推奨されました。 売上高はどう見る? まず、売上高では、過去からの推移に目を向けることが重要です。次に、5つの利益においては、売上高に対する比率やその推移、各利益間の差に着目する必要があります。さらに、比較対象として、過去実績や業界平均、自社の目標値などを常に念頭に置くと、より実態に即した分析ができることを学びました。 価値はどこに? また、損益計算書を「運動成績表」に例える表現には、非常に分かりやすく感銘を受けました。儲けを大きくするためには、どのような価値が付加されているか、また儲けの源泉が何であるかを明確に把握することが鍵であると感じました。これからは、価値を意識しながら損益計算書を読むことを習慣化していきたいと思います。 実践はどう進む? さらに、Week2で学んだ内容を実践するために、自社の損益計算書を実際に読み、自社の経営目標の達成度を確認してみるつもりです。その結果をもとに、同業他社との比較から、自社が直面している課題や社会情勢、内部目標設定の問題点、また競合の動向などを分析していく考えです。 日常ではどう対応? 一方で、日常業務においてなかなかPLに触れる機会が少ないため、理解を深めるのが難しいと感じています。同じような課題をお持ちの方がいらっしゃる場合、どのような方法で日々の業務に学びを活かし、知識の定着を図っているのか、ぜひ教えていただけると幸いです。

マーケティング入門

直感とデータで挑む戦略の未来

自社の強みはどう活かす? ある企業の事例と富士フィルムの事例から、自社の既存の強みをいかにターゲットに届けるかというマーケティング手法の有効性を学びました。他社のサービスをどの程度意識し、意思決定に反映するかも重要なポイントです。機能比較のためにまるばつ表を作成し、改善点を洗い出す手法には一定の効果があると感じる一方、プロダクトの機能が他社と類似し、手数料による差別化が進むケースもあるため、実行のスピード感も求められていると実感しました。 どの軸で攻める? 経営層の直感的な意思決定によって各種プロダクトが立ち上がり、顧客層が中小企業向けから大企業向けに拡大する中で、今後どの軸で攻めるかを議論する段階にあると感じています。プロモーション手法に先立ち、まずは各プロダクトがどの伸び代に位置しているかを明確にし、戦略を立案することが最優先事項だと思います。経営陣へのインプットも含め、各種マーケティングフレームワークを用いて、伸び代の定義やデータ分析の結果を踏まえた戦略作りを進める必要があります。 戦略検証はどう進む? また、既存顧客の属性をデータで分析し、ユーザーインタビューなどを通じた現プロダクトの価値検証によるメンタルモデルの分析が欠かせません。海外サービスを視野に入れた競合分析やポジションマップの作成、事業戦略とのストーリーラインの接続、さらに市場規模(TAM、SAM、SOM)の試算など、各種分析を通して具体的な全体戦略を描くべきだと考えています。加えて、既知の要望の深掘りをプロダクトロードマップに反映するとともに、エンジニアとの密なコミュニケーションや開発リソース確保のための内部稟議も重要な要素となると感じました。

クリティカルシンキング入門

データ分析で見つける新しい景色

データ分析の必要性を再認識 データの工夫や分析の大切さを改めて実感しました。バスケットボールの統計表が特に印象的で、私には馴染みのない分野でしたが、その表をどのように分解し、求める分析結果を導き出すかが想像できませんでした。しかし、講師の資料で〇と●に書き換えられた際、印象が全く異なり、勝敗バランスがはっきりと見えるようになりました。まさに「こういうことなんだ」と感じる瞬間でした。 多角的なデータ再検討の意義 これまで蓄積してきたデータを、曜日別・フロア別・月別・四半期別など様々な視点で再検討しました。また、資料の受け手や質問内容に応じて、それに適した成果物を作成していくことが重要だと思いました。 具体的なデータ分析の取り組み 具体的には、以下のデータを分析し、それぞれの利用率や売り上げ、クレーム、排出量、計画、比較、問い合わせ件数などについて報告します。 - オフィス全体利用率 - フロア内利用率 - カフェテリアのメニュー売り上げ - 空調クレーム - ゴミ排出量 - 社内アナウンスコンテンツ計画 - 全国各拠点比較 - メールセンターの搬出入 - 社内問い合わせ窓口件数 イシューを意識したアクション これらのレポートは各担当者から毎月提示されます。また、問題点があれば相談に来てもらうこともあります。その際には、「イシュー」を忘れずに次のアクションに進むよう、頭の体操を常にしておきたいと思います。 経営層との対話をどう深める? 今まで経営層と話す際、緊張が先立って「うなづいて終わる」ことが多かったのですが、今後は緊張しつつも「彼らの視座から何を見ているのか」を理解し、アクションにつなげていきたいと思います。

アカウンティング入門

B/Sで企業の未来を読み解く方法

B/Sって何を示す? B/S(貸借対照表)は、企業のお金に関する調達方法とその使い方を示す重要な資料です。このB/Sを詳しく見ることで、企業の事業コンセプトまで読み解くことが可能です。資産と負債は、それぞれ流動的なものと固定的なものに分類することができ、それらの割合から、どのような事業形態を取っているのかを推測することができます。 負債と純資はどう違う? また、負債と純資産の関連性も重要なポイントです。特に、純資産の割合が大きいことは、企業の安定性を示す一つの指標となります。しかし、市場が成熟していたり、市場ニーズが一定に続く事業であれば、負債が多くても返済の見込みがあるという解釈も可能です。このように、市場の安定性とその中での企業の立ち位置によって、企業の安定性についても考察を進めることができるのです。 利益はどこから来る? さらに、B/Sを通じて、事業モデルが固定資産や流動資産によって利益を生み出すものであるのかといった推測も可能です。事業を検討する際には、お金の調達方法や使い方、資産の持ち方、そして負債と純資産のバランスに関して熟考することが求められます。事業立ち上げ時にB/Sの構造を確認することで、どの部分で商機を見出すビジネスモデルなのかも明確にすることができます。 どこにリスクが? 加えて、グループ企業内の(親)商社と(子)メーカーのB/S構造を比較してみると、有名企業のV字回復や、事業再建、事業売却などについても、どの構造部分に要因があるのか、さらにどこがリスクになるのかを分析することができます。純資産の割合についても、その企業や投資家、株主にとって望ましい形になっているのかという観点で考慮すべきです。

アカウンティング入門

数字の裏に潜む儲け方謎解き

損益計算から何が見える? Week03では、損益計算書(P/L)を基礎として、利益構造をより深く理解する視点を学びました。売上高は事業規模、営業利益は本業の強さ、経常利益は通常活動全体の実力、そして当期純利益は最終的な稼ぐ力として捉え、それぞれの役割の違いを整理しました。また、単一の数字だけを見るのではなく、前年比較や他社比較といった対比を通して傾向や相違点を読み取る重要性も確認できました。 数字はどう反映される? ある事例では、提供価値の違いが原価率や販管費構造、さらには利益の出方にどのように反映されるかを具体的に示していました。値上げのリスク、販管費の軽重、原価率の差など、P/Lの数値が事業活動の性質と密接に対応している点を再認識することができました。 業界で何が違う? さらに、異なる業界のP/Lを比較する中で、メーカーでは売上原価が大きく、IT業界では販管費が大きくなりやすいなど、業態ごとの利益構造の違いにも触れました。こうした学びを通して、企業のP/Lは「儲け方の違い」を可視化しており、提供価値とコスト構造の整合性によって本質的な経営判断が読み取れるという理解が深まりました。 学びをどう活かす? 今回の学習を踏まえ、まずは身近な企業のP/L構造を提供価値と利益の出方の関係から読み解いてみたいと考えています。先日、業界関係者と話した際に利益率の高さに驚いた経験をきっかけに、その背景をしっかりと理解することを目標としています。実際に対象企業の損益計算書を確認し、原価率や販管費の構成、研究開発費の位置付けなど、業態特有の利益構造を整理することで、業界の「儲け方」をより実感として掴んでいく予定です。

データ・アナリティクス入門

目的で変わる!本気のデータ分析

分析の目的は? 今回の課題を通じて、データ分析の出発点はデータそのものではなく、「この結果を用いて何を判断するのか」という目的の明確化にあると実感しました。これまで、私自身は目的を曖昧にしたまま手元のデータ項目を比較することで、単に数値の違いを示すだけに終始していたため、数値の変動理由が不明瞭なままで、次にどのような行動を取るべきかが判断できませんでした。 比較軸整理はどう? 今回の学びから、目的に立ち返り、目標達成に必要な情報が整理された項目を選定し、条件が同じ項目同士を比較することが、真に意思決定に結びつく分析を行うために不可欠であることに気付きました。今後は、分析の前に判断すべき内容を明文化し、それに基づいて比較軸とデータ項目を整理することで、より実践的かつ具体的な行動に結びつく分析を目指していきます。 施策の実行は? また、今回学んだ「目的に基づくデータ分析」の考え方は、私が関わるチームの売上拡大や販売体制の最適化にも大いに活かせると感じています。たとえば、催事別、店舗別の売上や人員配置などのデータをただ眺めるのではなく、「どの施策が成果に結びついているのか」「どの事例を基準にすれば再現性のある成果を期待できるのか」という明確な目的をもとに分析することで、成功要因をより具体的に特定することが可能になります。 具体的な行動としては、まず分析前に判断すべき内容を明確に記述し、比較軸や指標を整理します。その後、時系列や複数の切り口からデータを集計・可視化し、売上や生産性への影響を検証する手法を取り入れます。このプロセスにより、チーム全体で施策の再優先順位を見直し、より効果的な行動計画を策定していく所存です。

データ・アナリティクス入門

分析で見つける自分の可能性

なぜ分析は重要? 分析とは、単にデータを分類し比較するだけでなく、目的に沿った深い理解を得る手法です。基本となる4つのステップ―目的の明確化、仮説の立案、データ収集、結論付け―を踏むことで、より有意義な結果を導き出すことができます。 比較対象はどう決定? 分析を行う際は、比較対象の選定が重要です。分析したい要素以外の条件を揃えるとともに、目的に合った比較対象を選ぶことで、情報が正確かつ具体的に浮かび上がります。 受動から能動へは? これまで、航空会社での営業活動において、社内の分析チームから共有されたデータやコメントを受動的に読み取っていました。しかし今後は、共有された情報に頼るだけでなく、自ら積極的に情報を集め、複数の視点から状況を把握できるよう努めたいと考えています。 予約状況はどう見る? 例えば、週間予約動向の分析では、毎週発表されるどの便・クラスの予約状況が一定の割合で埋まっているというデータを参照するだけでなく、先週との比較や他社の状況との違いを検討し、より広い視野で状況を評価していきたいと思っています。 売上分析の切り口は? また、売上実績の分析においては、単に他社や昨年度同月との比較にとどまらず、国籍、性別、年齢別のデータも取り入れ、顧客のニーズをより深く探る視点を持ちたいと考えています。 仮説設定はどうする? このような分析を行う際には、まず「何を知りたいのか」という目的を明確にし、データを眺める前に自分なりの仮説を立てることが大切です。数値をただ確認するのではなく、自身の考えを持ってさらに深堀りし、既存のコメントに影響されすぎず、自らの視点でデータを解釈する姿勢が求められています。

データ・アナリティクス入門

仮説が照らす学びと挑戦

仮説の意味は何? 仮説とは、ある論点に対する仮の答えを意味します。仮説を立てる意義としては、検証マインドを高め説得力を増すこと、関心や問題意識をより明確にすること、物事の進行スピードを早めること、そして行動の精度を向上させることが挙げられます。 複数仮説の意義は? また、仮説を考える際には、複数の仮説を同時に立てて決め打ちしないこと、そしてその仮説同士が異なる切り口で網羅的に考えられていることが重要です。さらに、フレームワークを活用することで、自分の思考の幅を広げ、複数の視点から仮説を検証する機会が得られます。この点では、各仮説の正しさそのものよりも、いくつかの異なる切り口を持つことが非常に大切です。 検証方法はどう? 仮説の検証方法としては、既存のデータを活用して確認する方法や、新たにデータを収集して比較検証する方法があります。比較のためのデータ収集においては、都合の良い情報だけに偏らないよう注意する必要があります。 営業での仮説は? また、仮説は営業の現場においても有用に活用できます。例えば、売上の進捗をマネジメントする上で、現状の売上に対して問題はどこにあるのか、原因は何か、そしてどのように解決すべきかといった点を明確にするために、問題解決の仮説は大いに役立ちます。こうした仮説をもとに施策を考え、実行し、その結果をデータをもとに定期的に分析することで、施策の軌道修正を行い、着実な成果を導くことが可能になります。 フレームワーク活用は? 最後に、従来は活用機会が少なかったフレームワーク、たとえば3C分析や4P分析を実際にどのように業務に取り入れているのか、その事例についても知見を得たいと考えています。
AIコーチング導線バナー

「比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right