- 前提と目的の明確化を徹底しよ
- AIで議事効率改善を実践せよ
- 安全管理と改善意識を磨け
伝える力の本質は?
生成AI時代においても「伝える力」の本質が変わらないという点が、今週の学習を通して強く印象に残りました。対AIも対人間も、何を目的としているのか、どの前提条件に立っているのかを明確に言語化することが重要です。AIは文脈をもとに推測を行ってくれるものの、前提が不十分だと、複数回のやり取りで認識をすり合わせる必要があるため、前提やゴールを明確にすることの大切さを改めて感じました。日常業務においても、作業内容だけでなく目的・背景・制約を整理して伝えることで、手戻りや認識のズレを減らすことにつながると実感しています。
生成AIで業務改善は?
管理部門業務の効率化や意思決定の質の向上に向け、生成AIの活用方法について具体的に考えてみました。例えば、1on1や部内ミーティングでは、Notion AIによる文字起こし・要約を活用して議事録作成の負担を軽減し、次回の振り返りやフィードバックに役立てることが考えられます。また、従業員のエンゲージメント向上施策として、サーベイ結果をNotebookLMで可視化し、会議資料として利用することで、より具体的な議論ができると思います。さらに、部門別損益データを用いた経営会議では、NotebookLMを活用して資料を作成し、毎月の実績や予測値の確認に役立てる計画です。
行動計画はどう進む?
具体的な行動計画としては、まずNotion AIの定着を図り、1on1や会議で継続的に文字起こしや要約を実施します。うまくいった点や改善点を振り返って、事前情報の入力方法をさらにブラッシュアップしていきます。次に、NotebookLMの基礎習得として、部門の各種データや画像データなどを取り込み、効果的なプロンプトの書き方や出力形式の指定方法を試行錯誤します。さらに、複数のソースを組み合わせた資料作成や実際の経営報告資料作成へと応用し、最終的には大量のデータ処理が必要な業務にGeminiの活用を検討する段階まで進める予定です。
専門分野と課題は?
一方で、自分が専門外の分野に生成AIを活用する際、回答の正確性をどのように担保すべきかという課題に直面しており、自信がない部分については過度に問い掛けないというアプローチには疑問を感じています。また、業務データや社内情報をAIに入力する際、どのレベルまでが許容されるのか、その線引きを組織としてどう設けるべきかも重要な検討事項です。現在の自社はセキュリティ上のルールや仕組みをより綿密に構築していく段階にあるため、今後、これらの点に対する意見や改善策を模索していく必要があると考えています。