リーダーシップ・キャリアビジョン入門

社用車管理のエンパワメント成功術

エンパワメントとは何か? エンパワメントとは、メンバーが自律的に業務を遂行できるように促すリーダーシップの一つです。目標を設定して、その達成方法をメンバーの自主性に任せつつ、効果的な支援を行います。ただし、ミスが許されない仕事や納期が極端に短い仕事には向かない手法です。リーダーがメンバーをよく理解し、モチベーションやスキル、喜びを感じる要因を見極めることも重要です。人材育成という側面も忘れずに考慮する必要があります。 目標設定はなぜ重要? リーダーシップの実践における第2ステップは目標設定です。目標設定では、メンバーをそのプロセスに参加させることが重要で、問いかけを通じてメンバーの問題意識や関心を引き出し、発言を促すことでコミットメントを得ます。また、目標は具体的で定量的であるべきです。メンバーが優先順位をつけて行動しやすいような、測定可能な目標が望ましいです。その際、目標に意義を持たせることで、メンバーの使命感を引き出し、挑戦感を与えることも大切です。これはメンバーに少し高めの目標を与えることで実現します。 成果が出ない時の対処法は? しかし、目標設定をしてもメンバーがやる気を出さない場合は、それが理解不足なのか、実行不能なのか、意欲の欠如なのかを見極めて、適切な支援を行う必要があります。 総務業務に目標設定をどう活用する? 私の業務に関して言えば、総務業務における目標設定を活用できると感じています。今回は、社用車管理業務に注目します。総務の業務は組織方針において抽象的になることが多く、(例:従業員が働きやすい職場環境の改善)そのため、メンバーが業務を日常の一環と捉えてしまい、課題の改善に取り組む意欲を持ちにくいと感じています。 具体的に、25年度の社用車管理業務の目標設定を実施しようと考えています。関係するメンバーを集め、問題意識や関心点をブレインストーミングで出し合い、それを整理します。小さな問題やすぐ解決できる事案は日常業務として処理し、大きな解決策が必要なものや即座に解決策が出ないものを課題として取り上げ、目標設定を行います。目的の意義、定量的かつ具体的な内容、そして挑戦の要素を各メンバーに伝え、エンパワメントを活用します。

データ・アナリティクス入門

データ分析の目的を意識して成果を出そう

データ分析の目的は? 「①データ分析の目的を意識すること」と「②正しく比較するために条件を揃えること」の2つが特に印象に残りました。これまでの仕事では、目の前にあるデータを漠然と加工し、何か分かることがないかと試行錯誤しているだけだったと改めて感じました。 明確な分析の必要性を感じる 今後は「何のためにデータ分析するのか」「何が分かると嬉しいのか」を明確にした上で分析に取り組むつもりです。また、自分の悪い癖として「結論ありき」のデータ収集や分析を行う傾向があると自覚しました。具体例では、「●●●という結論を導くために都合の良いデータを探してくる」という方法を取っていましたが、それだと誤った意思決定に繋がる可能性があります。常に正しい条件でデータを比較することの重要性を強く感じました。 賃金制度の課題とは? ①新しい賃金制度の検討に活かしたい。自社の賃金制度に関する課題を明確にするためには、競合や労働市場との比較だけではなく、「現状の給与分布が自社の賃金制度の考え方に沿ったものか」、「自社の人事ポリシーに沿ったあるべき給与分布はどうあるべきかと現状との差異」を正確に比較したいです。 目的達成のためのツール選び ②新しいビジネスツールを導入する際の分析に活用したい。労働安全衛生関係の教育ツール導入を検討しているため、目的を明確にし、「目的を達成できるツール」を選定するための比較を実施していきます。 具体的に言うと、自社の賃金制度の課題を明確にするためには、競合他社や労働市場との年齢や等級ごとの給与比較は当然ですが、それ以外にも比較対象とする要素があるはずなので、漏れないように洗い出します。競合等と比較する際には条件をしっかり揃えることが大切です。また、ツール導入については「何のために導入するのか」「その目的を達成するために必要な要素は何か」「それぞれの要素の基準は何か」をしっかり考えて最適なツールを選びます。 継続的な評価が必要? ツール導入後の経時変化も確認し、継続使用を検討します。いずれの取り組みも、目的や比較対象がズレていないか、要素に漏れがないかを上司やチームのメンバーとよく議論しながら進めていきたいと考えています。

データ・アナリティクス入門

平均だけじゃ見えない真実

単純平均の落とし穴は? 単純平均は、ばらつきを見えにくくし、また外れ値により大きく値がぶれる可能性があります。そのため、何が適切な代表値であるかを十分に考慮した上で、比較や分析に臨むことが大切です。 標準偏差で何が分かる? 標準偏差に関しては、波の大小をイメージすることで、そこから導き出せる情報がわかりやすくなります。これにより、平均だけでは捉えきれないデータの分布の実態を理解しやすくなります。 年齢層の違いを把握するには? 具体的なデータセットを例に挙げると、例えば、ある組織の従業員の平均年齢が38歳の場合、全体は大まかに新卒5年未満、30代後半~40代初頭、60歳前後という3グループに分けることができます。単純な平均値だけではこれらの年齢層のばらつきを正確に反映できませんが、標準偏差を合わせて求めることで、年齢層の多様性をより具体的に把握し、組織の魅力としてアピールする材料とすることが可能です。 外れ値の影響は? また、外れ値がビジネス上の意思決定にどのように影響を与えるかという視点も重要です。たとえば、顧客ごとの売上金額を分析する際、1%程度の大口顧客の存在が全体の平均を引き上げてしまうと、実際の単価水準が正しく把握できなくなります。単純平均のみを頼りにすると、実態との差を見誤り、競合との比較でも課題が見えづらく、適切な方策に結び付けることが難しくなります。 多角的分析は有効? このような背景から、単に平均を算出するだけでなく、加重平均や中央値、そして標準偏差を併用することで、データのばらつきを把握し、その意味するところを考察する姿勢が重要だと改めて感じました。年度末のまとめや次年度への申し送りの際にも、前年や前々年との比較を行い、伸び率や減少率を幾何平均で求めるなど、より多角的な視点でデータを分析することが求められます。 データの可視化は? 計算式の意味を完全に理解していない部分もありますが、情報やデータが揃っているなら、まずは標準偏差を算出して、その意味合いを考えることから始めると良いでしょう。数字をただ並べた表だけでなく、ヒストグラムなどを用いてばらつきを可視化することが、まず第一歩だと感じています。

クリティカルシンキング入門

もうひとりの自分でひらく新視点

どうして自己検証すべき? 今週のライブ授業では、2つの大切な学びが印象に残りました。1つは、自分の思考をチェックするために、もう一人の自分―批判的な視点を持つ自分―を育てることです。これにより、無意識に他者や自分の意見を鵜呑みにしてしまい、結果として仕事が行き詰まる状況を防げるのではないかと考えました。立ち止まってじっくり考える習慣の重要性を改めて実感しました。 具体と抽象はどう関係? もう1つは、具体と抽象のキャッチボールを行い、思考の幅を広げることです。以前、物事を整理・構造化する際にはMECEを意識して取り組んでいましたが、実際に活用する際には思考が停止しやすく、なかなか進まない経験がありました。しかし、今回の学びを通して新たなアプローチを取り入れることで、発想が広がる可能性を感じることができました。 実践はどのように進む? ただし、普段はインプットばかりに偏り、アウトプットする機会が少ないのが現状です。そこで、今後は意識してアウトプットの習慣を身につけ、学びを実践に活かしていきたいと考えています。 議論はどう広がる? また、これらの学びは以下の2つのシーンで特に活用できると感じました。まず、複数名で議論を行う場面です。これまで、自分一人の視点に偏ってしまい、議論が狭い範囲にとどまってしまうことが指摘された経験があります。目的をしっかりと意識することや、議論の前提を確認しながら進めることで、より広い視野から意見を交わせるようになると思います。 施策検討の落とし穴は? 次に、自分自身で施策を検討する場面です。一人で検討を進めると、手段が目的に取って代わってしまうことが多いと感じています。そのため、常に「目的は何だったか」を問いかけながら、もう一人の批判的な自分を育てる必要があると考えました。 学びをどう活かす? 以上の学びを踏まえ、まずは以下の点を意識して取り組んでいきます。 ① もう一人の批判的な自分を育て、常に目的を見失わないようにすること。 ② 具体と抽象のキャッチボールを行い、思考と視野の幅を広げること。 ③ MECEを活用して、物事を体系的に構造化すること。

クリティカルシンキング入門

データを分解して得る新たな視点

データ分解で得られる新視点とは? データを分解することで事象の解像度が上がることを学びました。データを単なる数字として見るのではなく、一手間加えることで新たな視点が得られます。例えば、データをグラフ化したり、割合を計算してみたりすることで、より深く理解できることが多いです。 データをどう分けるべきか? データを分ける際には、定性的な仮説を持ち、複数の切り口から分解することが重要です。その際、MECE(もれなくダブりなく)の原則を活用すると効果的です。MECEを用いると、全体集合を部分に分ける(足し算)、事象を変数で分ける(かけ算/わり算)、あるいはプロセスで分けるという切り口が考えられます。 MECEの原則を実践するには? 私はこの概念を知ってはいましたが、実際に分解をする際にうまくできていないと感じていました。切り口についても感覚に頼っていましたが、言語化された切り口を示されたことで、今後はそれを指針にできるようになったと感じています。 営業成果への応用とは? 営業部門の成果の低迷や、良好な場合の要因を探るために、この手法が活用できると思います。プロセスで分解している部分はありますが、クライアントを特徴別に分けたり(足し算)、売上や利益率から分解する(かけ算/わり算)部分が不足していることに気づきました。これを行うことで、良い成果を上げた要因を特定し、勝ちパターンを見出すことができ、悪い時は修正ポイントを明確にして改善行動に役立てることができると思います。 人事課題の解析はどう役立つ? また、人事課題の検討においても、従業員をMECEで分解し、課題点を探ることで、解決策を考えるのに役立てることができると感じています。 実践のための初めの一歩は? 学んだことを実践に移すため、データの切り分けを実際に行う機会を持ちたいと考えています。現在、すぐに取り組むべき課題もいくつかありますが、データを全体的に捉えられていないものが多いです。まずはデータを集めることから始めなければなりません。そのために、どのようなデータが必要なのかを5W1Hを使って考え、それをMECEを用いて分解しようと考えています。

クリティカルシンキング入門

3つの視で未来を切り拓く

全体の学びは何? 今回の講義では、主に以下の3つの学びを得ることができました。 論理的思考はどう育つ? まず、論理的思考力についてです。これまでは抽象的あるいは曖昧な言葉で自分の意見を伝えてしまうことがあったと気づきました。論理的思考力とは、誰に対しても納得してもらえる発想や発言のことであり、意図をもって具体的に言葉を選ぶ必要があると改めて認識しました。 考えの偏りはなぜ? 次に、人の思考には偏りがあるという点です。ドラックストアの演習では、商品を物として並べるという視点からしか考えられず、目の前にあるものだけに意識が向いてしまっていたことを実感しました。これまでは批判的に物事に向き合うとき、自分の思考や前提にまで目を向けることが少なかったため、自分自身の考え方にも偏りがあると学び直す機会となりました。 3つの視の本質は? 最後に、視点・視座・視野という「3つの視」についてです。目の前の問題にばかりとらわれがちな自分に対し、さらに広い視野で物事を捉える必要性を感じました。視点は目の前の問題、視座は自分自身、そして視野は短期的・部分的なものに限定されがちなため、この3つの視を意識することで、より広く深い視野で問題解決に取り組むことが大切だと学びました。 実践でどう活かす? 今後は、ビジネスシーンでは人事施策の企画などの場面で、「3つの視」やMECE、具体と抽象の考え方を用いて、問題を広く深く捉え、よりインパクトのある提案を目指していきます。また、プライベートシーンでも、友人や家族などとのコミュニケーションの中で自分の考えを正しく伝え、相手の意図を正確に汲み取ることに努めたいと考えています。そのためにも、自分や他者の前提や思考の偏りを理解し、適切にコミュニケーションができるよう日々意識を向上させていきます。 具体策は何か? 具体的には、企画業務やチームとのコミュニケーションにおいて、まず自分の考えやアイディアに対して本当にほかの選択肢はないかと批判的に問い、3つの視の観点から確認します。また、目の前の問題についてはMECEの考え方を用いて細分化し、より明確に捉えられるよう努めていきます。

アカウンティング入門

丸亀製麺で紐解く企業の数字

財務はどう活かす? 本日の学習では、財務数値を単なる数字として覚えるのではなく、ビジネスモデルやオペレーション、経営判断と結びつけて考える視点が深まりました。 丸亀製麺の分析は? Gailの問5に取り組む中で、丸亀製麺を題材に、店舗設備、原材料、人件費、メニュー開発、立地など、企業活動の各要素に着目して分析する練習ができました。それぞれの活動にどの程度のコストがかかり、その補填にどのような資金調達が必要なのかを構造的に考えることで、PL・BS・CFが企業の動きを反映した仕組みとして理解できるようになりました。 分析フレームワークは? また、企業を分析するための有効な思考フレームワークも身につけることができました。特に以下の点が印象に残りました。 ■バリューチェーン  企業の業務を活動単位に分解し、どこでコストが発生しているのかを整理する手法。 ■コスト構造(固定費 × 変動費)  各費用が重いのか軽いのかを判断するための基準となる。 ■軽資産モデル vs 重資産モデル(BSの視点)  企業のリスク構造、競争力、そして資金調達の方針の違いを読み解くための視点。 フレーム連携の効果は? これらのフレームワークを組み合わせることで、たとえば、丸亀製麺と他の類似企業との違いや、先日の例であるANAとZOZOの資産構造の違いを財務視点で比較する力が養われました。総じて、企業活動からコスト構造、そして財務数値へとつながる流れを考え、分析フレームワークを活用して整理する技術が大きな学びとなりました。 今後の実践はどう? 今後は、今回学んだ「ビジネスモデル → コスト構造 → 財務数値」のつながりを、研修設計やクライアントへの提案に積極的に取り入れていきたいと考えています。さらに、人事・組織の施策がPLやBSに与える影響を説明できるよう、説得力を高めるために、以下の3点を実践する所存です。 ①事例企業を分析する際に、まず活動をバリューチェーンで分解する習慣をつける。 ②固定費と変動費の構造を意識して見る。 ③軽資産/重資産モデルの違いを踏まえ、企業の強みとリスクを整理する。

リーダーシップ・キャリアビジョン入門

やる気スイッチを押す瞬間

動機付けの理論は何? 理論面では、相手のモチベーションを引き出すために、尊重、目標設定、フィードバック、信頼関係の構築が重要であると学びました。5段階欲求やX理論・Y理論、衛生要因と外部付け要因の考え方も、動機付けの引き出しとして覚えておくと役立つと感じました。特に、「人のやる気スイッチ理論」として、衛生要因がやる気を下げる一方、外部付け要因がやる気を上げるという考え方は印象的でした。また、他人のことは十人十色で理解し切れないため、まずは実際に動き、時には失敗を重ねながら向き合うことが大切だと実感しました。 実践で何を試す? 実践面では、リーダーシップを発揮するために「実行し振り返る」姿勢が不可欠であると学びました。計画を進める際には、干渉しすぎずにメンバーに権限を委譲する意識が必要です。不測の事態が生じた場合は、迅速に介入して収束させ、非を認めた上で次のアクションを共に考えることが求められます。また、振り返りを習慣化することで、自己の成長だけではなく、メンバーへの適切なフィードバックと人材育成にもつながると改めて感じました。フィードバックを行う際には、相手に自己評価を促し、明確な評価基準を示し、その結果を次にどう活かすかを共に検討することが大切です。 理論と実践の連動は? 全体として、今回の研修では理論と実践が相互に補完し合うことを実感できました。理論として学んだ動機付けの各要素(尊重、目標設定、フィードバック、信頼向上)が、実践でのフィードバックや目標設定と連動していることを確認でき、以前の週の内容や補足動画との繋がりも見直す良い機会となりました。 コミュニケーションはどうする? さらに、メンバーとのコミュニケーションの重要性にも気づかされました。相手に考えさせる質問を投げる力が、人材育成において不可欠であると感じました。質問力を磨き、クローズド・オープンクエスチョンを使い分けることで、相手の声を引き出し、受け止める姿勢を意識することが大切です。また、話しやすい雰囲気やオープンな場を作ることで、リラックスした対話が促され、結果としてモチベーションの向上につながると考えます。

データ・アナリティクス入門

分解思考で掴む未来へのヒント

理想と現実の違いは? 問題定義については、常に「あるべき姿」と現実とのギャップを意識し、そのギャップを埋めるために関係者と共通認識を持つことが重要だと感じました。 分解法の違いは? ロジックツリーには、「層別分解」と「変数分解」が存在します。私自身はこれを「足し算分解」と「掛け算分解」と表現しています。加えて、感度の良い切り口を多数持っておくことも大切ですが、これが自分の長年の課題となっています。 大枠から取り組むのは? 問題分析を行う際は、まず大きな枠組みから着手することが肝要です。私は計数業務や人材育成、組織開発を担当しているため、さまざまな場面でこのアプローチを用いています。 評価の焦点は? 具体的には、売上や予算を検討する際には、分解を通じて問題の大きさや影響範囲を特定するよう努めています。また、人材育成の方法を考えるときには、何が効果的かを明確にするために要素を分解し、議論を深めています。 要因の絞り方は? さらに、組織の問題に取り組む際は、組織のありたい姿を定義した上で問題を分解し、その要因候補を絞り込む作業を重ねています。 成果物はどう捉える? また、業務のアウトプット分解についても考えさせられます。業務を成果物と、それを生み出すアクションに分解し、受け取り手の観点から何が必要かを吟味することが、業務完了に向けた重要なポイントだと感じています。 分類項目のコツは? 売上や予算の項目に関しては、適切な分類項目の設定が、事業の推進状況を的確に把握するために役立つと考えています。 育成理論を再検討? 人材育成の観点分析では、人の性質や評価の項目化は進んでいる一方で、育成方法論についてはまだまだ整理の余地があるように思います。ここでは、「When」や「Where」といった切り口で新たな項目化ができる可能性があると捉えています。 数値評価の意義は? 最後に、組織の問題分析では、定期的な組織評価の数値を基に、課題項目がどの要素や要因に分解されるのかを試行することが、今後の改善に向けた有効な戦略であると感じています。

データ・アナリティクス入門

原因探索で拓く学びの未来

なぜプロセスを分解する? WEEK05「原因を探索する」では、まず一連のプロセスを分解して、各段階の転換(例:表示からクリック、クリックから体験レッスンへの導線)について整理する手法が紹介されていました。次に、問題の原因を探るために、企業戦略だけでなくそれ以外の要因も視野に入れる「対概念」の考え方が示され、幅広い視点での分析が求められていることが分かりました。 どうして要因に注目する? また、原因探索の際には、コストやスピード、意思疎通といった項目を重要度に基づいて重み付けし、最もインパクトのある要因に注力することが提案されています。さらに、少ない工数でかつリスクを抑えて改善を実施できるA/Bテストによるランダム化比較実験の実施方法も取り上げられ、実践的なアプローチとして評価されていました。加えて、ファネル分析により、ユーザーの行動プロセスを段階ごとに可視化し、どこでユーザーが離脱しているのかを実数と比率の両面から明らかにする手法も理解できました。 この事例はどう見る? 一方で、筆者自身が携わる自動車部品メーカーの事例では、採用ファネル管理表の作成が依頼されながらも、実際の元データが分散・乱雑な状態にある現状が語られていました。採用プロセスの各段階(応募者数、書類選考、面接、内定)の実数と割合を把握し、Excelやグラフ化ツールを使って直感的に状況を捉え、進捗管理やボトルネックの特定、採用プロセス全体の効率化と品質向上を目指すという目的が明確にされています。 なぜデータ整備が必要? そのため、まずは不要なデータの削除、重複データの統合、欠損データの処理、書式や値の統一など、元データの整備に着手する必要があります。加えて、着手前には「なぜ採用ファネル管理表が必要か」を改めて検討し、採用業務全体に問題がないか、他の角度から問題が発生していないかを確認する重要性が強調されていました。 分析の重要性は何? 今回の学びを通して、分析の基本プロセスである「what, where, why, how」を行き来しながら、各ステップにしっかり向き合うことの重要性を改めて認識することができました。

リーダーシップ・キャリアビジョン入門

自分の軸で切り拓くキャリア

キャリアの意義は何? エドガー・H・シャインの「キャリアアンカー」や「キャリアサバイバル」の理論を学び、自分のキャリアに対する考え方がより具体的に整理できたと感じました。これまでの経験の中で、営業としての実績やマネジメントでの成果、そして新しい挑戦への意欲が、それぞれ「特定専門分野・職能別のコンピタンス」「全般管理コンピタンス」「純粋な挑戦」というアンカーと結びついていることに気づき、自身の価値観が明確になりました。 環境変化にどう対応? また、変化の激しい環境下でキャリアを持続させるためには、戦略的にキャリアをプランニングし、定期的な「仕事の棚卸し」や「環境変化の認識」「仕事の見直し」が必要であることも学びました。自分の強みや価値を再確認することで、これまでの実績と今後の目標とのつながりがより分かりやすくなります。 どうやって舵を取る? こうした学びを通じて、他者任せではなく自分自身でキャリアの舵を取る意識が大切であると実感しました。自身のキャリア形成はもちろん、部下や後輩との1on1やキャリア面談の場面でも、相手の価値観や志向を理解するための有効な指標になると考えています。 1on1で何を探る? 具体的には、1on1の対話の中で、単なる業務報告にとどまらず「キャリアの価値観」や「将来の目指す方向性」に踏み込む質問を用意し、キャリアアンカーの視点を取り入れるよう努めます。面談のタイミングとしては、異動直後やプロジェクト終了後など、キャリアの節目に合わせ、継続的なフォローアップを実施する予定です。 目標はどう具体化? また、自身のキャリア形成においては、半年に一度、仕事の棚卸しと環境の変化を確認する時間を設け、自分の強みや関心の変遷を見直します。その上で、短期(1年以内)や中期(3年以内)の目標を具体化し、どのような経験やスキルを積むべきか明確にしていこうと考えています。 組織でどう共鳴? さらに、こうした取り組みをチーム内で共有し、キャリアを考える重要性や変化への備えを広め、組織全体でキャリア形成を支援する風土の醸成にも努力していきたいと思います。

データ・アナリティクス入門

納得するだけではなく、行動に移そう!

ストーリーの重要性は? 今回の講義で最も印象に残ったのは、「やみくもに分析しない。ストーリーが大事」という点です。今まで意識していなかったwhereで傾向を掴み、どこまで掘り下げられるかという部分に気付かされました。whereを浅くしすぎるとwhyがまったく意味をなさなくなるため、問題がどこにあるのかという点にもしっかり目を向けたいと思います。 「わかる」と「できる」の違い 全体の講義を通じて感じたことは、講義や動画の内容に対して納得できる部分が多々あったということです。毎回わかっているつもりでしたが、実際に演習をしたりグループワークで意見を交換したりすると、うまくいかない場面が多いことに気付きました。「わかる」と「できる」は全然違うということを改めて実感しました。 賃金制度見直しのポイント 来期に向けた賃金制度の見直しに際して、以下のポイントを意識して分析したいと思います。まずは①自社の賃金制度のどこに問題があるのか、次に②なぜそのような問題が発生しているのか、最後に③どうすれば理想の姿に近づけるのかです。これらを講座で学んだことを活かし、具体的な賃金制度案を示していきたいです。 仮説からのデータ集め方とは? また、自身および一緒に働くメンバーに対しては「仮説➡データ集め➡検証」という明確な流れを意識することが少ないため、今回の学びを共有し、効率的・効果的に課題解決のステップを踏めるチームにしていきたいと考えています。 学びを日常に活かすには? チームで共有するためには、まず自分がしっかりと理解し、使えるようになることが大切です。学んだことがまだ全然身についていないため、まずは学んだ内容をもう一度振り返り、ポイントを整理し、日常業務や生活の中で1日1回は必ず実践することを意識したいです。特に「仮説を網羅的に立てること」、「何と何を比較すれば得たい結果が得られるのか、比較対象を設定すること」、「条件を揃えて比較すること」といった点について意識しながら日々考える習慣をつけたいです。
AIコーチング導線バナー

職種が「総務・人事」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right