戦略思考入門

新たな視点!規模と習熟の発見

規模の経済ってどうなってる? 自社が製造業であるため、規模の経済性については理解していましたが、規模の不経済が発生する可能性については今回初めて知りました。また、営業においては「ある程度まで経験を積むと、それ以上の習熟効果が得られなくなる」という現象にも共通点を感じました。 標準化か習熟かどっち? 習熟効果を目指すのか、あるいはプロセスの標準化効果を狙うのか、状況に応じた柔軟な対応が必要だと実感しました。自部門における範囲の経済性については、これまで具体的なイメージが持てませんでしたが、動画で取り上げられた例のように、スキルやノウハウを有する人の異動や新規プロジェクトへの参加が、範囲の経済性に寄与することを理解できました。 不経済はどう捉える? 今回初めて知った規模の不経済を自社に当てはめ、実際に発生していないか、また万一発生する場合にはどのようなケースが考えられるかについても検討してみました。営業における習熟効果は経験によるところが大きいと感じるため、今後はメンバーにプラスの経験を積ませるよう努め、時には厳しい状況も経験させることで成長を促していきたいと考えています。

データ・アナリティクス入門

グラフが語る数字の物語

グラフ化の効果は? データ分析では、まずグラフ化して数値を視覚的に確認することで、比較がしやすくなる点が基本だと学びました。これにより、数字の背後にある特徴や傾向が一目で把握できるようになります。 代表値の選び方は? 講義では、データの代表値として「単純平均」「加重平均」「幾何平均」「中央値」があること、そしてデータのばらつきを示す「標準偏差」の重要性を改めて認識しました。どの平均値を用いるかは、分析の目的に応じて選ぶ必要がある点も印象的でした。 必要な基礎理解は? 普段の業務では、無意識のうちにデータ収集やグラフ化を行っていたため、なぜそれが必要なのかを体系的に学ぶことができたのは大変有意義でした。講義を通して、さまざまな角度からデータを評価できる手法を身につけることができました。 多角的評価の理由は? また、クライアントや社内のデータを用いたマーケティングやプロモーションの計画では、ピクトグラムや棒グラフで全体感を把握した上で、単純平均だけでなく「加重平均」「幾何平均」「中央値」「標準偏差」などを組み合わせ、多面的な視点からの分析が重要であると実感しました。

データ・アナリティクス入門

SNS分析で得た新たな学びとテクニック

代表値の使い分けは必要? 代表値と散らばりの両方を意識する必要があることを学びました。代表値には単純平均、加重平均、幾何平均、中央値があり、特に平均値に3つの種類があるため、使い分けが重要です。 ビジュアル化の選び方は? また、ビジュアル化の重要性についても考えさせられました。どのようなグラフを使うかは分析したい内容に依存し、この点は経験から学んだつもりでしたが、実際には正確な知識が不足していたことを改めて認識しました。 各種データの分析に標準偏差を使おう これまでは単純平均しか算出したことがなかったため、今後は必要に応じて3種類の平均値を意識して使い分けるようにします。SNS投稿の反応を分析する際もばらつきを考慮せず、平均値だけで傾向を把握していましたが、標準偏差も用いることでより正確な把握・報告ができそうです。 例えば、SNS投稿に関する実績報告時には、エンゲージメント率などを平均だけでなく標準偏差も使用して分析しようと思います。投稿の種類や内容のカテゴリーによって差があるのかどうかも検討しつつ、ビジュアル化する際は適したグラフを選ぶことも重要だと考えます。

マーケティング入門

実体験が教える普及のコツ

商品の魅力はどう伝える? 売れる可能性を秘めた商品でも、その魅せ方次第で手に取ってもらえないことがあります。今回、商品の普及に影響する要因を多角的に考えるため、「イノベーションの普及要件」という5つの視点(比較優位、適合要件、わかりやすさ、使用可能性、可視性)を学びました。 経験から何を学ぶ? また、自分自身が新商品の購入をためらった経験を思い返すと、このフレームワークの各要素が身近に感じられ、具体的な事例として捉えやすくなりました。 何で伝えると効果的? さらに、商品を紹介するためのDM(タイトルや文面)、営業資料、CTAボタンの文言作成といったシーンで、このフレームワークが大いに役立つと実感しています。普段は漠然と考えていたのですが、今回はこの枠組みに沿って検証することで、より良い表現やアイデアを導き出せるのではないかと期待しています。 キャッチ作成の悩みは? 一方で、キャッチコピーの作成など、AIに相談してもなかなか理想通りにならないことが多く、今回のようなフレームワークに基づいた検討が、素敵な文言を生み出す鍵になるのではないかと感じています。

マーケティング入門

お客様の本音に気づく瞬間

潜在ニーズを発見できる? 成功するマーケティングにおいて、顧客が抱える潜在的な困りごと―すなわちペインポイントを見出すことは非常に重要です。顧客自身が気付いていない欲求を言語化するためには、購買履歴やサイトの回遊履歴などの定量的な指標と、アンケートやグループインタビューなどによる定性的な指標の両面から分析する必要があります。 自社強みはどこ? ペインポイントが明確になった後は、他社に先んじて自社の強みを活かし、その解消策を講じることが求められます。このため、競合他社と比較して自社の優位性や強みが何であるかを客観的に整理し、その認識をチーム全体で共有することが不可欠です。 定性評価はどうなる? また、自社の顧客についてペインポイントを検討する際には、購買履歴やサイトの回遊データといった数値分析に加えて、顧客アンケートなどを通じた定性的な評価も取り入れる必要があると感じます。 チーム共有は確実? さらに、競合他社に対して自社の強みや優位性を明確にし、客観的な視点で整理した内容をチーム内で共通認識として持つことが、今後の施策を円滑に進める上で重要となると考えます。

データ・アナリティクス入門

グラフで見る!実務改善の秘訣

平均値の違いは? 平均値の種類やその違いについて整理し、理解を深めることができました。とりわけ、これまであまり使用する機会がなかった幾何平均についても、成長率といったテーマが出た際に活用できるよう意識する必要性を感じました。 分布と標準偏差は? 分布や標準偏差に関しては、これまで取り組んだことがなかった内容でしたが、グラフ化することで実務上の問題解決に繋がるという新たな視点を得ることができました。実際に、標準偏差はグラフにすると直感的に理解しやすく、非常に有効であると感じました。 代表値の比較は? また、代表値の比較を行う際に、ばらつきを示すグラフと代表値を並べて示す手法を知りました。これは、口頭での説明を簡略化する工夫としても効果的であるとの印象を受けました。以前、自社商品のカテゴリーの成長率について問われた際、どのような指標を用いるか迷った経験があり、現在では幾何平均も一つの選択肢として考えられるようになりました。 実務利用の事例は? 今後、平均値や標準偏差が実務でどのように活用されているか、具体的な事例があれば知りたいと感じています。

データ・アナリティクス入門

数字と仮説のドキドキ分析

どのデータが最適? 分析とは「分析は比較なり」という考えを基本に、どのデータを使い、どう加工し、何を明らかにするかを吟味する作業です。各種データに適した加工方法やグラフの見せ方が存在するため、やみくもに加工するのではなく、目的に合わせた手法を採用することが大切です。 目的と仮説は何? ビジネスデータの分析においては、データに取りかかる前に必ず「目的」と「仮説」を明確にする必要があります。プロセスは、まず具体的な仮説の設定から始まり、既存や新たなデータの収集、集計や代表値の算出、さらにはグラフを用いた加工を経て、聞き手が一目で理解できる形にまとめ上げるという流れで進められます。数字に基づくストーリーづくりが成功の鍵となります。 3C視点で何が見える? また、1つの事象を分析する際には、シンプルな課題であっても市場・競合・自社という3Cの視点を用いることで、当初は見落としていた要素が浮かび上がる可能性があります。意識的に3C分析に基づいて仮説を抽出することは、グループワークを通じて他者の視点を取り入れ、個人の思考力の限界を補いながら精度を高める効果的な手法と言えます。

リーダーシップ・キャリアビジョン入門

キャリアサバイバルで広がる未来の道

キャリア観はどう見える? キャリアアンカーに再び触れる機会を得られ、「キャリアサバイバル」についても新たに学ぶことができました。自分の現状が将来の自分に繋がっていくことを、改めて実感しました。役職はありませんが、なぜこの講座を受けて生産性が高く、それぞれが活き活きとしたチームを築きたいのか、根本にある自分の思いを再確認できました。 将来設計はどうする? 今後の自身のキャリアビジョンが明確になりました。現在抱えているプロジェクトで感じていた課題のモチベーションや意義を、再設定することができました。今の課題感を今回の学びに活かすことで、自分のキャリアの幅を広げられると考えています。 チーム力はどう高める? 役職がない現在のチームにおいて、リーダーシップやエンパワメントを意識したマネジメント力の向上は、自身が描くキャリアビジョンに必要な要素であり、今学ぶべきことだと感じます。また、私がやはり仕事を行ううえでチームワークを大切に思うからこそだと理解しました。キャリアサバイバルを意識し、日々の業務でも意義を見出し、課題解決に向けて前向きに取り組んでいきたいと思います。

クリティカルシンキング入門

現状を突き詰めるイシューの力

何に注目する? イシュー、すなわち今直面している課題を明確にする方法は、さまざまな場面で活用できると感じました。会議の場面や日常の問題に対して、まず何にフォーカスすべきか立ち止まって考えることの大切さを再認識しました。また、ビジネスの現場では問題を引き起こす要因が複数考えられますが、その中でどこに手を打つべきかを組織内で確認し、共通の認識を持つことで、問題解決力が向上するのではないかと思います。 現状分析で何が見える? 現状の環境を正確に分析し、そこからイシューを導き出して、皆で共有することが何より重要だと認識しました。 組織見直しはどう? 私が所属する部署では、ある部分に手当てをすれば別の部分に歪みが生じるという調整が必要な状況が見受けられます。今後は、量よりも品質に焦点をあてる環境にあり、まさに思考や業務の転換期にあると感じます。目指すべきゴールや我々の役割を日々実践として語り続ける一方で、今本当に解決すべき課題は何かをもう一度しっかりと見つめ直す必要があると考えます。将来的な姿を踏まえ、現状の組織体制や目的、あるべき姿の見直しを行うことが適切だと思います。

クリティカルシンキング入門

分解で見つける成功のカギ

丁寧な分解が重要な理由は? 分解を雑に行うと誤った結論を導き出してしまうため、分解は丁寧に、さまざまな切り口で行うことが重要です。具体的には、分解には「いつ(When)」「どこで(Where)」「誰が(Who)」「どのように(How)」といった視点をうまく使う必要があります。また、分解の方法には、一般的な層別分解だけでなく、変数分解やプロセス分解も活用することが有効です。 多すぎる切り口に注意が必要? しかし、切り口が多くなりすぎると、全体像を見失ったり、結論が見いだせない場合もあります。そのため、市場動向や顧客状況を分析する際は、切り口を複数選んで、場合によっては別の角度からアプローチするように心がけます。 自然材料マーケティングの分析法は? 私は、半導体の新規材料のマーケティング業務を担当しているため、市場動向や材料に対する検討意欲を分析する際、地域別、用途別、コミットメント方法、期待金額別・期待機能別、追加投資別といった基準を用いて、MECE(もれなくダブりなく)を意識して行うようにしています。この分析は、今年度のレビューと来年度の計画立案時に実施します。

クリティカルシンキング入門

視点を広げる思考法の新発見

どうして偏見に陥る? 気づかないうちに偏った思考に陥っていることを、ワークを通じて理解しました。現在の自分の視点がどのようなものかを意識しなければ、自分の考えに固執してしまうことがあると感じました。そのような偏りを修正するためには、新たな視点を得ることが重要です。そこで、フレームワークやAIを活用し、広い視野で思考を展開しようと考えています。 会議で意見がぶつかる? ミーティングの場では、経営者や人事、営業、マーケティングなど、それぞれ異なる視点や思惑が存在することを理解しながら話を進めることが大切です。一方的な視点に基づいて話すと、別の視点から反論を受けることがあります。そのため、事前にどのような視点があるのかを把握し、自分の思考を客観的に見直す必要があります。 どう意見を磨く? まず、自分の考えをアウトプットし、他の人ならどう考えるかを自分の意見に当てはめてみることから始めようと思います。これにより、自分の意見を修正し、より良い意見を創り出すことができます。こうしたプロセスを繰り返すことで、自分の意見を自信を持って主張していきたいと考えています。

データ・アナリティクス入門

データで解く! 成果を上げる実践術

理解を深めるためには? 自分が「なんとなく分かっていた」と思っていたことも、改めて問われると言葉に詰まってしまうことがあります。それは実際には十分に理解できていなかったからかもしれません。分析を行う際には、各要素を比較し、言語化することを意識する必要があります。普段の研修では聞き手に回ることが多かったため、アウトプットするのは不得手でしたが、この学習を通じてしっかりと身につけたいと思います。 データ活用の戦略は? 業務実績データから得られる課題抽出や傾向の把握、戦略立案などに活用したいと考えています。特に、各支社・拠点におけるデータを活用し、問題解決に結びつけていきたいです。また、意思決定の過程では、常に数字に基づいて話すことを徹底し、業務で成果を上げていくことを目指します。 効果的な比較分析法は? データ分析においては、比較分析を徹底する必要があります。それに伴い、できる限り多くのデータを集めることが理想ですが、労力も相当なものになるでしょう。無駄な作業にならないよう、目的やアウトプットイメージ、期限、制約をしっかりと言語化し、伝えることが重要です。
AIコーチング導線バナー

職種が「マーケティング(企画・調査・分析・広報)」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right