戦略思考入門

多様な視点を武器に!意見を活かす力

多角的視点で何を捉える? 本質を見失わず、多角的な視点で広い視野から分析することの重要性を実感しています。フレームワークのような戦術は、知識として知っただけで満足せず、実際に活用して初めて効果的な武器になると考えています。また、自分の意見に固執するのではなく、多くの人の意見を取り入れることを意識したいと思います。 悩みはどう生じる? 働く中で、自分一人で悩みがちで、他者が理解してくれないと感じることがあります。これにより、悩みを抱え込み、人に打ち明けずフィードバックを受け入れられないという悪循環に陥っていました。しかし、学習を通じてフィードバックを得ないことが最も危険であると実感しました。納得できない意見に直面したとしても、他の人の意見を聞くことをあきらめないで、多様な視点を得るようにしたいです。 意見共有はどう進む? 企画や戦略を立てる際には、自分だけで完璧を目指すのではなく、早い段階でチームメンバーから意見をもらうことを心がけます。そして、その意見をもとに内容をさらに高めていき、上司の意見を取り入れる過程を習慣化したいです。このようにして、より良い成果を生み出すことを目指します。

データ・アナリティクス入門

仮説思考を活用したデジタル化挑戦記

仮説思考の基本は? 仮説思考は、ビジネスのスピードと精度を向上させ、説得力を伴った意思決定を行うために重要です。このプロセスを実践するには、まず複数の仮説を立て、網羅性を持たせることが必要です。仮説を立てる際の重要なツールとして、フレームワークを活用することが推奨されます。仮説には、結論の仮説と問題解決の仮説があり、特に問題解決の仮説では、what、where、why、howの順に考えることが基本です。 デジタル化の進め方は? 私の仕事の一環として、保険手続きを紙からデジタルへと移行させる方法を模索していますが、現状では多くの既存データが十分に活用されていないと感じています。そのため、仮説思考を取り入れながら、デジタル化率を向上させるための施策を複数考えたいと思います。 実行策の視点は? まず、手続きの種類ごとにデジタル化率を向上させる余地があるか、既存データを基に複数の網羅的な仮説を立てます(where)。次に、デジタル化が進んでいない理由を明らかにするため、幾つかの原因を挙げます(why)。そして、実現可能性やコストを考慮しながら、具体的な実行策を練ります(how)。

データ・アナリティクス入門

営業成績アップのカギは仮説立てにあり!

仮説を立てる重要性とは? 原因を見つけるためには、仮説を立ててデータを収集することが重要だとWeek4で学びました。仮説は一つに絞らず、複数立ててから絞り込むことが大切であり、仮説同士に網羅性を持たせる必要がある点に納得しました。しかし、網羅性や複数の仮説を考え過ぎると時間がかかるため、バランスを考えることが重要です。 営業成績向上の仮説は? 例えば、自分の営業成績が悪いときに成績を上げることを目的とした場合、様々なポイントで仮説を立てられます。行動数が足りない、提案の質が悪い、ニーズが大きいクライアントに当たっていないなど、様々な仮説が考えられます。網羅性の確認には他のフレームワークを活用することが有効です。 データと仮説の精度を高める方法 具体的には、まず仮説を立てるために自分の営業プロセスを分解し、その過程でフレームワークを調べたり、上長とディスカッションを行ったりして網羅性を高めます。また、過去の営業成績からデータを抽出し、仮説の精度を上げるための材料にします。もし不可欠なデータが不足している場合は、将来的にはデータの取得が可能となるように社内で提案することも考えられます。

データ・アナリティクス入門

データが効く!新たな分析視点を実践

代表値はどう役立つ? 今まで、分析に代表値をほとんど使ったことがなかったと反省しました。業務で特に活用できそうだと思ったのは、加重平均と中央値です。 加重平均でどう評価? まず、加重平均を販売施策の効果分析に利用しようと思います。施策ごとに異なる予算をかけているため、予算に応じて効果を加重平均で評価します。これにより、施策の効率性を測り来年度の販売施策立案に活かせます。具体的には、販売施策の実績を「かかった費用」「成約金額合計」「販売台数」「粗利益額」「費用対効果」などの項目でまとめておきます。そして、年度内に加重平均で評価し、費用対効果の良かった施策とその要因を明らかにします。 中央値はどう活かす? 次に、中央値をSNSマーケティングの効果測定に役立てます。たとえば、Instagramにおける直近一年のインプレッション、リアクション、アクティビティをまとめ、中央値を算出します。これにより、通常の反応水準を把握し、外れ値に該当する投稿を見つけて分析し、今後の投稿戦略に活用します。具体的には、外れ値を見つけ、増やしていくべき投稿内容や逆に今後は減らしていくべき投稿の傾向を把握します。

データ・アナリティクス入門

平均値の罠に気づいてデータを活用する方法

平均値の危うさを再認識 今回の学習で、平均値の危うさを改めて知りました。例題を通じて、グラフにすると簡単に理解できる数値もあれば、解釈が難しい数値もあると感じました。代表値と散らばりをうまく活用して、仕事に活かしたいと思います。 正規分布と2SDルールに興味 これまでも様々なグラフを見たことはありましたが、平均値の名称と内容について初めて深く理解できました。特に、正規分布と2SDルールはとても興味深かったです。 標準偏差の応用は可能? 標準偏差の数値でデータの散らばりを明確にすることも応用できそうです。弊社オウンドメディアにおけるコラムのオーガニック流入の記事ごとの順位を、分布グラフを用いて検証してみたいと思いました。それにより、カテゴリーを大分類し、リライトの優先順位を決めるなどの応用が期待できます。 新たな発見を期待して まずは、今回学んだ内容をしっかり復習し、これまで手をつけていなかった集計にも活用してみます。そうすることで、新たな発見や課題が生まれることを期待しています。さらに、TOP10の記事のキーワードリサーチにも、この解析手法を試してみたいと思います。

マーケティング入門

偏りからの脱却:広がる学びの世界

マーケ視点は偏ってる? 6週間の学びを振り返る中で、自分のマーケティング視点が偏っていたことに気づきました。従来、単に「いいものを作ればよい」という考えにとらわれていた自分が、無意識のうちにそのような固定観念に陥っていたことを実感できました。また、グループワークで出会った仲間たちとの時間に改めて感謝の念を抱き、マーケティング思考の幅を広げる重要性を感じています。 情緒価値を考える? Q1に関連して、今後は機能的価値だけでなく、自社商品やサービスが提供する情緒的な価値についても、さまざまな視点から考えてみたいと思います。どのような直接的および間接的な価値を提供できるのか、また利用者がどのような感情を抱くのかを洗い出し、良い面や課題点を明確にして施策に反映させることが目標です。 課題解決の道は? さらに、課題解決に向けた施策を継続的に立案し、取り組んでいく状況にあります。まずは、Q2に記載した内容を実践しながら改善に努めたいと考えています。また、6月から新しいプロジェクトに参画する予定であるため、WEEK2~5までに学んだことを積極的に実践し、今後の成長につなげていきたいと思います。

デザイン思考入門

小さな実験、大きな学び

シンプルな検証方法は? テストを行う際は、コストや実現性に関するハードルに注目し、まずコアとなる機能に絞ったシンプルなサービスやプロダクトを試す方法が有効です。試した結果が芳しくなかった場合でも、顧客の視点に立って、何が良かったのか、何が課題だったのかをしっかりと振り返り、それを知見として共有しながら、何度も改善していくことが大切です。 基本姿勢は整っていますか? フィジビリティスタディを重ねる中で、テストに対する基本的なスタンスが自分に不足していたと感じています。まずは、仮説としてのコア価値を定義し、確認したい観点にあったテスト形式を作成することが重要です。加えて、何度も振り返って改善を重ねることで、サービス全体の向上を図っていきたいと考えています。 離脱防止の秘訣は? また、総合演習でも触れたように、顧客の離脱防止のために有効な打ち手を数多くテストしていく必要があります。そのためには、まず課題定義をしっかりと行い、振り返りの基盤となる先を作ることが前提となります。さらに、明らかにしたいポイントに応じてテスト方法を工夫することで、より具体的な改善策を見出していきたいと思います。

クリティカルシンキング入門

データ分解で見える!思考の旅路

どうやって切り分ける? 物事を分割して考える際、結果が見えないこともありますが、それ自体が「何もわからない」という結果を示しているため、意義はあります。その上で、次の切り口を探ることが重要です。初めの段階では大きく切り分けていく方が良いですが、最初から最適な切り口を見つけることは難しいでしょう。そのため、見つけた切り口からさらに広い視点の切り口を探る往復作業が効果的です。 情報はどう加工する? 情報はまず収集し、それを目的に応じて変形させることが重要です。そして、それに基づき次に進むべき方向を考えます。例えば、自社と他社の比較や、今年度の新人の離職や休職の状況を把握し、施策についての成果を確認します。研修後の全体的な理解度や企画時の要因分析、アンケートの結果整理なども同様に重要なプロセスです。 研修後はどう比較する? 特に今年度の新人の離職・休職については、理由別にデータを収集し、昨年度と比べて施策の効果を評価します。また、研修後の理解度把握では、各個人の研修中のデータを整理し、現場配属後の成果と結びつけ、成果が出ている人とそうでない人との違いを比較することが求められます。

戦略思考入門

効率的な思考と行動で成果を上げる方法

仮説思考で効率化を図るには? 仮説思考の重要性について理解が深まりました。一定の仮説を持って思考を進めることで、効率的なアクションが取れる一方、データを疑う姿勢も忘れてはならないと感じます。GAiLのワークで出てきた「時間あたりの利益」は、自分なりの仮説を持つ良い例だと捉えました。 どうやって惰性を打破する? 捨てる難所と克服のポイントについても学びました。 まず「捨てる方が顧客の利便性を増す」という発想が最も重要だと感じました。これはまだ自分には十分に考えられていない部分ですが、重要な視点であると思います。 次に「昔からの惰性をやめる」についてです。当初、中途入社の新参者であったころの視点を持つことができなくなりつつあります。自分には持てない視点を、新参者に話を聞くことで補完していきたいと考えています。 ビジョン設計で成果を出すには? そして「餅は餅屋」に任せるためのビジョン設計やディレクションが前提になるという点です。経験が少ない状況において、どう具体的に実現するかをしっかりと考えていきたいと思います。 これらのポイントを踏まえ、日常の業務に生かしていきたいと思います。

クリティカルシンキング入門

もう一人の自分に出会う瞬間

自分の思考をどう? クリティカルシンキングを学ぶとは、自分の思考をチェックする「もう一人の自分」を育てることです。直感や経験則に頼った偏った思考ではなく、客観的に物事を捉えるために、頭の使い方そのものを学ぶ必要があります。 問いを立てるには? この手法は、「問い」を立て、その問いに対して自分の主張と根拠を整理しながら答えを導くプロセスです。特にお客様からの要望に対しては、課題の本質を正確に捉えるためにクリティカルシンキングが欠かせません。適切な問いを設定し、明確な主張と理由を持ってアプローチすることで、より最適な提案が可能となります。 チームでどう共有? また、チームでこのアプローチを共有し、共通の「問い」を持つことにより、全体の方向性が一致し、効率的なチームビルディングが実現できます。一人一人が直感的に安易な答えを出すのではなく、まずは問いを立て、ピラミッドストラクチャーを活用して論理的に組み立てることが重要です。 本当に正しいの? さらに、その立てた問いが本当に正しいのかを常に自問自答する癖をつけ、必ずアウトプットとして形にし、チーム内で共有することが求められます。

データ・アナリティクス入門

数字から広がる仮説の世界

数字加工はどう進む? 3週目では、仮説を立てるために数字をどのように加工するかを学びました。数字から意味を見出すには、まずデータを加工し、次にグラフなどでビジュアル化するという手順が重要です。具体的には、データの代表値を用いた加工や、ばらつきを感じた際には標準偏差を活用するなど、データの特性に応じた方法を選択します。これにより、グラフ化された情報から傾向をより把握しやすくなります。 手法の応用は? また、データ加工の手法が多様であることを理解した上で、毎月集計している売上や顧客層の分析にどの方法が適用できるのかを検討する意欲が湧きました。顧客層に特にばらつきが見られなくても、着目する観点によっては標準偏差を使った加工が有用である可能性があります。そのため、まずは代表値を用いてデータを整理し、グラフにしてみることが考えられます。 売上分析の疑問は? さらに、毎週抽出している売上データに目を向け、加工を通じて仮説を立てる試みも進めたいと思います。売上が高い日と低い日があるという傾向に注目し、どの代表値を活用するのが最適かを検討しながら、より具体的な仮説を構築したいと考えています。

データ・アナリティクス入門

中央値でひも解くデータの秘密

代表値と分布はどんな意味? データ分析では、まず代表値と分布の理解が重要です。代表値には単純平均、加重平均、幾何平均、そして中央値の4種類があり、それぞれの特徴を把握する必要があります。一方、分布は標準偏差を用いて表現され、対象に応じた適切な代表値を選ぶことが求められます。 中央値はどう計算する? そのため、中央値や標準偏差といった指標は数式に基づいて算出されますが、原理原則を理解すればエクセルの数式機能を活用して求めることが可能です。 平均と中央値の違いは何? この考え方を踏まえて、昨年度に最も支払い額が大きかった顧客のデータを例に、代表値と分布を算出してみます。特別な事情で多額の支払いが発生しているため、単純平均と中央値の数字の違いを確認し、代表値としては中央値のほうが適していると考えられます。 期間内のデータ比較はどう? さらに、対象となるのは2024年4月から3月までの期間の顧客データです。各顧客に対して毎月の支払額の単純平均と中央値を求め、また支払いの内訳に記載されている各顧客品番ごとの費用についても、同様に毎月の単純平均と中央値を算出して比較していきます。

女性に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right