データ・アナリティクス入門

数字から広がる仮説の世界

数字加工はどう進む? 3週目では、仮説を立てるために数字をどのように加工するかを学びました。数字から意味を見出すには、まずデータを加工し、次にグラフなどでビジュアル化するという手順が重要です。具体的には、データの代表値を用いた加工や、ばらつきを感じた際には標準偏差を活用するなど、データの特性に応じた方法を選択します。これにより、グラフ化された情報から傾向をより把握しやすくなります。 手法の応用は? また、データ加工の手法が多様であることを理解した上で、毎月集計している売上や顧客層の分析にどの方法が適用できるのかを検討する意欲が湧きました。顧客層に特にばらつきが見られなくても、着目する観点によっては標準偏差を使った加工が有用である可能性があります。そのため、まずは代表値を用いてデータを整理し、グラフにしてみることが考えられます。 売上分析の疑問は? さらに、毎週抽出している売上データに目を向け、加工を通じて仮説を立てる試みも進めたいと思います。売上が高い日と低い日があるという傾向に注目し、どの代表値を活用するのが最適かを検討しながら、より具体的な仮説を構築したいと考えています。

データ・アナリティクス入門

中央値でひも解くデータの秘密

代表値と分布はどんな意味? データ分析では、まず代表値と分布の理解が重要です。代表値には単純平均、加重平均、幾何平均、そして中央値の4種類があり、それぞれの特徴を把握する必要があります。一方、分布は標準偏差を用いて表現され、対象に応じた適切な代表値を選ぶことが求められます。 中央値はどう計算する? そのため、中央値や標準偏差といった指標は数式に基づいて算出されますが、原理原則を理解すればエクセルの数式機能を活用して求めることが可能です。 平均と中央値の違いは何? この考え方を踏まえて、昨年度に最も支払い額が大きかった顧客のデータを例に、代表値と分布を算出してみます。特別な事情で多額の支払いが発生しているため、単純平均と中央値の数字の違いを確認し、代表値としては中央値のほうが適していると考えられます。 期間内のデータ比較はどう? さらに、対象となるのは2024年4月から3月までの期間の顧客データです。各顧客に対して毎月の支払額の単純平均と中央値を求め、また支払いの内訳に記載されている各顧客品番ごとの費用についても、同様に毎月の単純平均と中央値を算出して比較していきます。

データ・アナリティクス入門

データが語る合格ストーリー

分析の目的は何か? 分析とは、異なる対象を比較する作業です。データには量的なものと質的なものがあり、分析の目的に合わせた適切なデータ収集が求められます。何を明らかにしたいのかを事前に定めた上で、さまざまな方法を用いて分析を進めることが重要です。なお、データ分析は社会の多くの分野で幅広く活用されています。 国家試験の変数を探る? 学生の国家試験合格の可能性を推定する際には、各変数についてもれなく、かつ重複なく抽出する必要があります。例えば、地域診断の項目に基づいて情報収集を行い、理論モデルに従うと同時に、優先順位を踏まえた効率的なアセスメントが可能になると考えられます。 重みづけはどう考える? 具体的には、国家試験に合格した学生と不合格の学生を比較する際に、MICEによる変数の再検討が挙げられます。高校卒業時の成績、入学試験の方式や結果、入学から4年生までの全履修科目の評価、粗点、出席状況、提出物の遅滞や未提出、模擬試験の結果の推移、さらには国家試験対策講座の出席状況など、さまざまな要素を盛り込むことが考えられます。しかし、各要素の重みづけについては現状、疑問点が残る状況です。

戦略思考入門

フレームワークで広がる新たな学び

フレームワークの意義は? 様々なビジネスのフレームワークについて学び、まずはその重要性を理解しました。フレームワークの説明や図を用いた具体例がわかりやすく、一定の学び方の流れに沿って進められるため、非常に理解しやすかったです。また、ある企業の事例を通して、異なる意見の背景にある理由を理解することが、より深い分析につながると実感しました。 情報PRをどう考える? 情報PRにおいては、ただやみくもにSNSで発信するのではなく、発信対象となる人や地域、年代、さらには発信手段自体についても慎重に分析する必要があると感じました。また、現在の活動におけるバリューチェーン分析が十分でないと気づき、収益化の仕組みや強みについてさらに掘り下げて考えたいと思いました。 実践計画はどうする? 今後は、まず自分でフレームワークを組み立てる時間を作り、実際に試してみたいと思います。書き出しながら自分なりの意見を固め、各担当者の意見を取り入れながら事業を展開していく予定です。特に、作業を進める際は、個々の意見だけでなく、全体の意見が対立する場合でもその背景に注目しながら進めることが大切だと感じています。

クリティカルシンキング入門

問いを極める!課題解決の一歩

問題点は正しく見えてる? 課題解決を考える際は、まず問題点が何かを洗い出し、さらにその問題点が本当に正しいのか見つめ直すことが大切であると感じました。また、定めた問題点を皆で確認しながら議論を進めることで、的確な議論が実現できると学びました。 会議の議題は整理済? 会議では、始める前にイシューを明確にすることで、話がぶれることを防げると実感しました。 企画立案の仮説は? 新商品企画を立案する際には、アンケートを実施して回答を集計する前に、課題の仮説を立てやすくするために問題点を整理しておくことが重要だと考えました。回答を集めるだけでなく、課題の検証としてアンケートを活用することで、現状の課題や商品の課題を整理しながら進めると、途中でコンセプトがぶれにくくなることを学びました。 問いは効果的? 普段から「問い」に意識を向け、直感で問題を捉えるのではなく、問題点が本当に正しいのかいろいろな方向から考えることが求められます。捉えた問題点を相手に的確に伝えるために、話を整理して伝えることや、課題を共有しながら確認して進める姿勢が、より効果的な議論や企画につながると感じました。

リーダーシップ・キャリアビジョン入門

日々の実践で磨くリーダーの力

変化にどう対応? 転職によって環境が大きく変わった中、これまでの自分のリーダーシップスタイルに限界を感じ、本講座を受講することにしました。しかし、単に知識を得るだけでは変化は訪れず、学んだ内容をいかに自分に取り入れて実践していくかが極めて重要であると学びました。 学びをどう生かす? ライブ授業には参加できなかったものの、講座で学んだ心構えは以下の3点に凝縮されていると感じています。まず、自分自身に学びを引き寄せなければ、知識が深まることはないということ。次に、「リーダーシップを発揮する」とは、日々の「当たり前」の積み重ねが大切だということ。そして最後に、実践から得た洞察に体系的な理論が加わることで、より強固な力となるということです。 理想のリーダー像は? これからは、自分が置かれている環境を改めて見つめ直し、自分自身がどのようなリーダーでありたいかを常に問い続ける所存です。チームや組織を牽引するには、各メンバーの動機づけやモチベーションの向上が欠かせません。今後は、メンバー一人ひとりに向き合い寄り添いながら、一緒に成長していくための目標立案に努めていきたいと思います。

デザイン思考入門

小さな行動、大きな可能性

正解は本当に必要? デザインシンキングは、唯一絶対の正解を追求せず、悩みすぎずに手を動かすという考え方が、起業の相談やブランディングにおいても共通する部分があると感じました。この考え方はクライアントにも共有しようと考えています。 顧客視点はどう捉える? また、自社のホームページ再構築を検討している中で、サービスを顧客視点で多角的に見直すことの重要性を実感しています。クライアントの声は自社の商品だけでなく、同業他社のお客様の視点も参考にできるのではないかと考えています。 小さな一歩は大切? さらに、小さく着実に行動し、成功するまで取り組むことの大切さを改めて感じました。絶対の正解を求めるのではなく、新規サービスにおいてはクライアントファーストで、真に顧客が抱えている悩みに焦点を当て、アイデアの拡散から再スタートを図ることが必要だと思います。 少数の声は大事? 最後に、たとえ少数の顧客であっても、全力でその視点に立つことで、予想以上に多くのアイデアが生まれることに気付きました。勇気を持って選択肢を絞り、小さくPDCAを回していくことが、一つの勝ち筋になると感じています。

データ・アナリティクス入門

思考の質を高めるMECEとMICE活用法

MECEの考え方とは? MECEの考え方は、切り口を重複させずに漏れなく設定することが重要です。どのような切り口が最適かを判断するためには、高い感度が求められます。これに関しては、分析の経験を積むことや、多方面からの意見を聞くことも必要と感じています。 ロジックツリーの活用法 ロジックツリーについては、論理的思考を活用することで、適切な判断ができるようになります。 MICEの活用には何が必要? MICEの考え方は、実務に役立ちそうで、特に顧客分析など日常的な業務での活用チャンスが多いです。「重複なく漏れなく」を実現することはその通りと感じつつも、切り口の設定によって重複を避けることが難しい場合もあり、その点をどのように克服するかが課題だと考えています。 BI分析へのMICEの導入 業務で作成しているBI分析において、MICEの軸を取り入れることにしました。切り口については様々な角度から実施し、どの分析が効果的であるかを検討します。また、ロジックツリーについては、既にパイプライン分析で似たことを行っていますが、改めてロジックツリーを用いた分析も進めてみようと思います。

クリティカルシンキング入門

データ分析で気づく新たな切り口の魅力

データ分析の新しい切り口は? データ分析において、単に数字を見るだけでなく、その切り口や追加する要素によって新たに得られる情報が異なることを学びました。データを視覚化することで、適切な切り口を見つける手助けにもなります。そのため、まずは異なる切り口でデータを分けてみることから始めていきたいと思います。 売り上げパターンはどう探る? 例えば、商品の売り上げを分析する場合には、既存顧客や新規顧客のどの層で売り上げが伸びているのか、また、新色と既存色のどちらが売り上げに寄与しているのかを確認する必要があります。 新商品の需要をどう予測する? また、新商品の市場性やニーズについても、どの年代や年齢層に需要があるかを分析することが大切です。このためにアンケートを実施し、そのデータを元に市場性を確認していきます。 昨年の売り上げデータの活用法は? 昨年発売した商品の売り上げについては、月ごとに分析を行っているため、データの分け方をさらに細かく見直し、実践に活かしたいです。新商品だけでなく、既存商品や周辺商品も含めて、相関性を確認することで、より深い洞察が得られると考えています。

マーケティング入門

顧客視点の深層ニーズ探求術

顧客の真意は何? 「顧客からの意見をそのまま商品化しても、それが必ずしも成功するわけではない」との考え方に深く共感しました。商品化の難しさや顧客目線での本当のインサイトをしっかりキャッチすることの重要性を感じました。顧客の声をいかに解釈し、表面的な意見ではなく、深いニーズを探ることが大切です。 なぜ競合と比べる? また、顧客目線で考えているつもりが、いつの間にか競合商品と比較してしまうこともあると気づきました。この点についても、うなずきながら学習を進められました。 差別化の鍵は何? 商品差別化が難しい状況で、デプスインタビューなどから得たニーズやインサイトを的確に読み取ることの重要性を感じています。その際、顧客のシーンやネーミングも検討の対象として考える必要があります。 具体策は何? 具体的なアクションプランとしては、デプスインタビューでの知見の洗い出しや顧客の行動を考慮した想像力の働かせ方、さらにイノベーション普及の要件をどう当てはめていくかを探求しています。他社のD2Cブランドを研究し、キャッチコピーの検討に役立つパーセプションフローを考えることも進めています。

データ・アナリティクス入門

仮説×データで切り拓く未来

どうして条件を揃える? 今回の実践では、普段の業務で使っているデータ分析のフレームワークと非常に近い感覚を得られました。時期要因や市場状況、法令改定など、すべての条件を完全に統一することは難しいですが、できるだけ条件を揃えた上でA/Bテストを行う大切さを再確認しました。 仮説はどう検証する? また、仮説を立てる際には、一人の頭脳や限られた環境だけでは限界があると感じました。時間を確保し、場合によっては他者の意見や視点を取り入れながら、しっかりと仮説を検討し、データの切り口を考える必要性を実感しました。 採用分析のコツは? 顧客の採用データ分析については、応募から入社までの全てのプロセス(場合によっては書類選考の評価も含む)を明確に線引きし、どの段階で大きな離脱が起きているのかを特定できるよう、可視化の土台を整える重要性を学びました。 改善の基準は何? さらに、改善施策を検討する際には、どの指標を、どのように改善するための施策なのか、また、いつのスコアを基準にするのかを明確にすることが必要です。振り返りの際には、必ず条件を揃えて比較することが求められると感じました。

アカウンティング入門

会計実務に迫る学びの瞬間

大手企業の会計はどう? ある取引実績のある大手企業の事例から、他社の会計状況に具体的に興味を持って向き合うことができました。アトラクション作成に必要なコストの減価償却やロイヤリティの考え方、また授業内で触れられたスポンサーが費用を負担して宣伝につなげる手法など、これまで疑問に感じていた点を具体的でわかりやすい形で学ぶことができました。 基礎理解で自信は? 会計の基礎を理解し、考え方をより深められたことで、経営層との折衝にも自信と重みを持って臨めるようになったと実感しています。自社の事例を客観的に振り返り、現状のビジネスの強みや改善点を適切に把握し、意見として示すことができればと考えています。 P/L分析で成長は? さらに、自部門のP/Lを詳しく読み込み、同業他社と比較することで、改善点やさらなる成長ポイントを探ってみたいと思います。特に原価率については、これまであまり疑問を持たずに指標として活用してきましたが、現状を踏まえた上で適正なビジネスモデルの再構築を検討し、点と点でしか捉えられていなかった部分を、全体的な線としてシミュレーションする試みをしてみたいと考えています。

女性に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right