データ・アナリティクス入門

分析が楽しくなる仮説の立て方と実践例

適切な比較対象を選定するには? 分析の本質は比較であり、適切な比較対象を選定することが重要だと学びました。また、問題解決には、「What, Where, Why, How」の4つのステップがあることも理解しました。今後は、ただやみくもに分析をするのではなく、当たり前ではありますが、仮説をきちんと立ててから実施することを心がけていきたいと思います。 秋の実証実験で何を活かすか? 秋から始まる実証実験の結果を、今回学んだ内容を活かして分析していきます。特にアンケート設計を実施する必要があるため、事前に仮説を立て、実証実験で得たいデータが得られるような設計にしていこうと思います。 アンケート設計の考慮点は? 9月中にはアンケート設計を行います。実証の目的や今後に繋げていくために欲しい情報などをよく考えた上で設計を行うことを心がけます。また、今回学んだ知識を忘れないためにも、業務の中で意識的に使用していくことを心がけていきたいと思います。

データ・アナリティクス入門

グループで広がる学びの輪

グループワークの価値は? グループワークで、普段の仕事の進め方や新たな学びの方法について話し合う機会があり、その経験を講座終了後も活かすことができたのは大変良いと感じました。 振り返りの意義は? ライブ講座では、これまでの学びを振り返ることができましたが、再度復習したいという思いも残りました。 どんな分析が役立つ? また、自分が普段担当していない手法であるファネル分析やA/Bテストについて学ぶことができ、新たな発見となりました。グループワークでは、原因の仮説を立てる際に3C分析を活用し、課題解決のフレームワークをいくつか身につけておくことで、仮説を立てやすくなると実感しました。 フレーム習得は難しい? 今後は、代表的な課題解決のフレームワークを3つ程度覚え、常に思考の一部として活用できるように努めたいと考えています。最初は難しいかもしれませんが、思考の確認として、予めAIに質問・確認するステップを取り入れることにしています。

データ・アナリティクス入門

4ステップで拓く新たな可能性

問題解決の4ステップは? この講義では、ビジネスにおける問題解決の基本となる4つのステップ―What(問題の明確化)、Where(問題箇所の特定)、Why(原因の分析)、How(解決策の立案)―を学びました。現状とあるべき姿とのギャップを意識することで、問題そのものを正しく捉え、解決に向けた具体的なアプローチが可能になるという点が印象的でした。 どうして進化を狙う? また、単にマイナスの状態を回復させるだけではなく、既に正常な状態からさらに進化させ、より良い結果を生み出す方法にも目を向ける大切さを理解しました。この学びは、事業性評価や臨床試験の失敗理由の考察、交渉時に相手を説得する際の有効なツールとしても応用できると感じています。 数値情報はどう活用? さらに、データ解析の手法―例えばピボットテーブルの活用―を通じて、日常の業務や意思決定に具体的な数値情報を取り入れる方法を学び、実践的なスキルの向上を目指していきたいと考えています。

データ・アナリティクス入門

現状理解の大切さを知る分析の旅

問題の現状理解には何が必要? 私は、これまで「どうやって解決するか」にばかり意識が向いてしまい、問題の「現状を理解する」ための思考が不足していることに気づきました。分析には常に比較が必要であり、現状と理想との比較が重要だということを、今回の学びで強く感じました。 課題抽出と仮説立ての手順 課題を抽出し仮説を立てたあと、データを集めてさらに深く分析するという手順を大切にし、データに向き合いたいです。以前は課題解決のためのデータチェックを誤ることがありました。そのため、ロジックツリーの思考を身に付ける必要があると感じています。 ロジックツリーはどう活用する? まずは手元にあるデータの詳細な分析を行うために、ロジックツリーを具体的に図面として描いてみようと思います。その際、必要となる切り口をMECE(Mutually Exclusive, Collectively Exhaustive)に基づいて細かく分け、誤りなく課題を抽出したいです。

データ・アナリティクス入門

比較が照らす学びの軌跡

比較の意義は何? 「分析とは比較である」という考え方を実践することができました。その他のデータと比較しながらその意味合いを考察することが、分析の基本であると再認識しました。具体的には、数字による集約、視覚的に捉える方法、そして数式で関連性を見るといった3点について学びました。数字の集約では、平均値のみならず、データの散らばりを示す標準偏差の役割も重要だと理解しました。また、データの中心を考える際には、単純平均、加重平均、幾何平均、中央値といった複数の指標があることを確認できました。 実務への応用は? ヒストグラムの作業では、実際に手を動かすことでその理解が深まり、自身の業務において作業プロセスのミスの発生度合いなどを視覚化する際に活用できると感じました。また、気象庁の温度データを用いた演習を通じて、公開情報からデータをダウンロードして利用する方法を再認識しました。今後は、こうしたデータ活用の手法を実務に積極的に取り入れていきたいと思います。

データ・アナリティクス入門

仮説検定で見える本当の事実

データ比較の工夫は? 定量分析に取り組む中で、表面的な分析だけではビジネスの現場で活用できないという事実を改めて認識しました。より効果的な仮説検定を行うためには、どのデータと比較するかを十分に考える必要があると痛感しました。 複数比較のメリットは? たとえば、ある一社のデータに依存するのではなく、複数の企業のデータを並行して比較することで、検定の信頼性が高まります。また、売上高の分析に際しては、単に売上の低下を把握するだけでなく、その原因を探るために仮説を立て、実際に仮説検定を実施するプロセスが重要だと感じています。 情報共有の秘訣は? さらに、普段の情報共有の場においても、前年同月比だけでなく、業種別や地域別の視点で分析を行い、得られた知見をアウトプットする工夫が求められると学びました。 相関関係の本質は? 今後は、相関関係に関する知識をさらに深めるため、より詳しい方の意見をお伺いできればと考えています。

データ・アナリティクス入門

A/Bテストで見える戦略のヒント

どうして問題が起こる? 問題の原因を探るためのアプローチについて学び、これまでの仮説中心の手法から一歩踏み込んだ問題解決の方法を理解できました。 A/Bテストで何がわかる? 中でも、A/Bテストを用いて施策の効果を比較し、仮説検証を繰り返すことの重要性を学びました。条件をできるだけ揃えて比較することで、より正確な評価ができる点に納得しました。 販売戦略にどう影響? 実際、あるスーパーマーケットの販売戦略を考える際にも、A/Bテストの手法は有用だと感じています。どの商品がより売れるのか、また企画がどの程度影響を与えるのか、複数の案を出して検証することは、戦略構築に大いに役立つと思います。 工数と時間の見直しは? ただし、A/Bテストを実施する際の工数と時間の按分については、今後さらに検討が必要だと感じました。これらの点を踏まえ、実際の業務にどのように活かすかを考えるうえで、引き続き学びを深めたいと思います。

データ・アナリティクス入門

外れ値も味方にする分析学

外れ値は見逃す? 物事の状況を平均値だけで捉えると、外れ値が見落とされる可能性があることを再認識しました。今後は状況に応じて、加重平均などほかの指標も使い分けることで、状況を正確に把握し、適切な課題設定ができるよう実務でも意識して取り組んでいきたいと考えています。 多様な平均手法は? たとえば、複数製品の売上分析では、直近数年間の成長率を示す場合に幾何平均を用いたり、製品ごとの優先順位や活動量を反映させた分析には加重平均を使用するなど、さまざまな手法を状況に合わせて活用できると感じました。また、分析結果の提示には適切なグラフを用い、周囲への効果的なアウトプットを目指す一連の流れが形成できると実感しています。 標準偏差は役立つ? さらに、標準偏差は大量のデータを扱う際に有用だと印象づけられましたが、どの程度のデータ量であれば効果的に機能するのか、また他の分析手法との使い分けについても、今後さらに掘り下げて考察してみたいと思います。

データ・アナリティクス入門

「分析力を鍛える成功への鍵」

分析の本質は何か? 分析とは、他者との比較に基づいたものであることが重要です。ただデータを平均や中央値で計算するだけではなく、意味のある計算を行わなければなりません。相手に課題や成果をわかりやすく伝えるためには、相手が求めている情報をしっかりと表現することが求められます。 分析の必要性をどう示す? 分析を始める際には、その必要性を相手や受講者に示すことが重要です。まず現在の状況を把握し、そのうえで必要となる目標や合格ラインとのギャップを明らかにします。これは、会社の目標や業界平均などを基準にすることができます。 成長を示すための視点は? 他者と比較した際のウィークポイントや、成長を示すような経時的な変化を提示することも大切です。自分自身の経験だけでなく、他者の成功例を活用することで、さらに多くの知識を身につけることができます。これにより、他者にとってわかりやすく、行動変容につながるデータの提示や説明が可能になると考えます。

データ・アナリティクス入門

データで読み解く解決ストーリー

なぜ原因を分解した? 総合的演習では、原因を一つひとつ分解し、必要な要素を紐解いていくプロセスを体験しました。分析作業では、何を比較するのか、またその比較からどのような意味合いや関係性が浮かび上がるのかを考察しながら、目的を明確にし仮説を立て、データによる検証のループを実感しました。 どのステップが有効? また、演習では課題解決のためのステップについて認識を深めることができました。具体的な状況を想定して仮説を設定し、分析内容をストーリーのように組み立てる過程は、プロセス全体を含めた納得感のある解決策となると感じました。こうした流れであれば、職場で共有しても十分に理解を得られると思います。 データで何が分かる? 現状分析においては、データの変化や数値の比較からどのような意味合いが導かれるのかを整理することが大切です。また、問題の原因や理由については、経験や感覚に頼るのではなく、データというエビデンスをもって示すことが求められます。

データ・アナリティクス入門

説得力を生む加重平均の真実

分析視点は何が肝心? 今回の学習では、分析において比較する5つの視点(インパクト、ギャップ、トレンド、ばらつき、パターン)を意識することの重要性を再認識しました。また、平均値として単純平均、加重平均、幾何平均、中央値といった代表値の違いについて学び、特に加重平均と幾何平均が今後の業務で役立ちそうだと感じました。 平均選択のポイントは? これまで実務では単純平均を使用してきましたが、利益が低下している部分に焦点を当てるためには、加重平均を取り入れることで事業の取捨選択がより明確になると気づきました。加重平均を用いれば、経営陣に現状の課題を整理し、改善提案を行う際に説得力が増すと考えています。 幾何平均はどう見る? 一方、幾何平均は計算が複雑なため、現状では取り扱いが難しい印象を持ちました。しかし、来年以降の利益率成長率を算出する際に有用な指標となる可能性があり、将来的には利益予測の精度向上に寄与できるのではないかと期待しています。

データ・アナリティクス入門

新たな視点で挑む問題解決術

仮説はどう活かす? 今回の学びで、仮説は結論を導くだけでなく、問題解決に役立つ視点としての「問題解決の仮説」が存在することに気づきました。また、仮説には時間軸があることや、複数の仮説を立て網羅性をチェックすることで、偏りのない視点を保つことが大切だと理解できました。 データはどう扱う? また、データ収集においては、新たなデータを集めることに注目する一方で、手元にある既存のデータや一般に公表されている情報を活用する分析が軽視されがちである点に気が付きました。新しいデータの収集は楽しい面もありますが、一方で入手が難しい場合もあるため、状況に応じた柔軟な対応が求められると感じました。 手法はどう広げる? 現在、業務効率化のためにデータ収集を通じて行動様式の検証に取り組んでいますが、今後はデータ収集に限定せず、インタビューやアンケートなど多様な手法を組み合わせることで、より効果的な業務改善を目指していきたいと考えています。

「データ・アナリティクス入門」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right