データ・アナリティクス入門

比較と検証で切り拓く未来

分析の見極めポイントは? Week1を振り返って、「分析は比較なり」という言葉が強く印象に残りました。正確な分析を行うために守るべき要点を改めて認識するとともに、仮説と検証を繰り返すことの重要さを実感しました。 業務での分析とは? 実際の業務シーンでは、以下のような場面でデータ分析の手法を活用しています。病院のデジタル推進におけるデータ分析、サーバ性能やトラブル発生時の問題解決、新サービス導入時のサーバ負荷試験に関する見解、また、LINEや無呼吸ラボ、近隣検索、PCPへのファネル分析、アクセス数やページビューの分析など、さまざまな事例に取り組んでいます。 分析習慣の秘訣は? 日々の業務においては、勘や経験則だけに頼ることなく、データ分析に基づいた意思決定を行う習慣を身につけることが重要だと感じています。問題が発生した際には、What、Where、Why、Howの視点で現状を整理し、的確な対策を講じるために、仮説と検証を繰り返す姿勢を大切にしていきたいです。

データ・アナリティクス入門

自分の視点で挑む数字の世界

数字の裏を見る? 数字をただ眺めるだけでなく、何を調べたいのか、どの点が重要かを事前に考える習慣が身についたと感じています。事前にどのようなデータが必要か、どんな情報がありそうかを予測し、仮説を立てることの大切さを、実際の分析を通じて実感できました。 売上の謎は? また、売上の上昇や下降といった大枠だけを把握した後、次のステップとして自ら仮説を立て、複数のデータを組み合わせて検証する練習にも取り組んでいます。データ分析専門のチームが示す資料をそのまま受け入れるのではなく、自己の視点でデータを比較検討することに注力しています。 実践の手順は? 具体的には、以下の手順で実践しています: ① 週明けに発表される週次予約情報や売上実績を前週と比較し、自分なりの考察を深める。 ② 得たデータを企画書に盛り込み、提出する。 ③ これらの実践にあたり、必要なデータの提供をデータ分析チームに依頼してみる。 これらの取り組みを通じ、分析力の向上を実感できています。

データ・アナリティクス入門

データと仮説で切り拓く未来

原因は何でしょう? 問題を解決するためには、原因をプロセスごとに分解して明らかにする方法が効果的だと実感しました。広告にかかる費用と表示回数だけで費用対効果を計算しても、課題解決には至りません。しかし、クリック数や申し込み数といったデータを加えて各割合を算出することで、具体的な解決策のヒントを得ることができました。 A/Bテストはどう? また、業務では主に定量分析や可視化を中心に行っているため、これまで触れる機会の少なかったwebマーケティングで活用されるA/Bテストについて学べたことは非常に新鮮でした。 仮説、どう作る? さらに、日々の業務でデータ分析や問題解決を行う際、どうしても過去の経験や周囲の意見に基づくストーリーに頼ってしまい、データ活用が十分にできていなかったことに気付きました。今後は、「What」「Where」「Why」「How」の各ステップや様々なフレームワークを活用した仮説の立案を取り入れ、より効果的な解決策を模索していきたいと思います。

データ・アナリティクス入門

分けて比べる実践の記録

手法の意図は何? 今回のデータ分析では、まず「分けて比べる」という手法を意識し、対象や基準を明確に設定して検証しています。データ分析の目的—つまり、何のために分析を行い、どのような成果を期待するのか—をはっきりさせた上で、ゴールや仮説、今後の取り組みイメージを具体的に描くよう努めています。また、目の前にあるデータのみを頼りにせず、生存者バイアスに十分注意しながら分析を進めています。 売上向上の秘訣は? 購入者の分析とパートナー企業の売上分析の双方について、各々の良い点と改善すべき点を明確に整理することで、パートナー企業全体の売上向上に寄与するマクロサポートへと繋げたいと考えています。さらに、サンプルデータや本講座を通してデータ分析の実践回数を積み重ねることで、これまでの経験に加え新たなプロジェクトに活かせる知識を身につけたいと思います。過去に他のプロジェクトで培った分析経験を再検証し、今後のプロジェクトに向けたデータ収集や分析手法の向上を図っていく所存です。

データ・アナリティクス入門

仮説で挑む学びの実験室

仮説はどう整理する? 仮説を立てる際は、まず複数の仮説を考え、その中から適切なものを絞り込むことが重要です。それぞれの仮説が互いに網羅性を持つように、さまざまな切り口で考えを広げる必要があります。 データは十分かな? 次に、立てた仮説に基づいて分析に必要なデータを収集します。もし手元に十分なデータがない場合は、誰にどのように聞くかを決め、比較のためのデータも合わせて収集しておくことが求められます。 仮説の基本って何? 仮説思考とは、目的(コミュニケーションや問題解決)と時制(過去・現在・未来)を整理しながら、結論を導く仮説や問題解決のための仮説を立てる考え方です。 ギャップをどう埋める? 施策を検討する際は、現状(ASIS)と目標(TOBE)とのギャップ(GAP)に着目し、その差を埋めるために仮説を構築します。メンバーと意見を交わしながら、多くの仮説を出し合い、その中から絞り込みを行い、最終的に必要なデータを集めるプロセスが重要だと感じました。

データ・アナリティクス入門

効果的な分析方法を学び成功へ一歩前進

効果的な分析手法を学ぶには? 分析を行う際に、ただ漠然と進めるのではなく、ステップを考え、ロジックツリーを用いることやMECEを意識した切り分け方を学んだおかげで、より効果的な分析ができるようになった。これからは慣れに頼らず、きちんと目標を持って分析を行っていきたい。 売上向上への試行錯誤とは? 売上が伸び悩む中で様々な試行錯誤を続けているが、前回学んだ「目的」「仮説」「数字の性質」に加えて、今回の「ステップ思考」「ロジックツリーでの展開」「MECEを意識した切り分け」を活用し、過去の数値分析を再度行いたいと思う。 新規施策提案のためには? 新規施策を提案する際には、目標となる部分と仮説、そしてそれがステップ思考になっているか確認し、ロジックツリーを実際に作成して客観性があるかどうかを見極める。また、MECEを意識することで、意味のある分析・評価に繋がっているかどうかを自問自答していきたい。そして、その提案をメンバーや上層部に向けて発信していく予定だ。

データ・アナリティクス入門

ロジックツリーで拓く課題解決

正常と理想は何が違う? 正常なあるべき姿とのギャップを解消するだけでなく、現在の正常な状態からありたい姿へのギャップを埋めること自体もひとつの問題解決だという考え方は非常に印象に残りました。 ロジックツリーはどう使う? また、ロジックツリーという手法について学び、その分解方法に層別分解と変数分解があることを理解できた点も大きな収穫でした。MECEの原則を意識することで、分析において情報の漏れや重複を防ぎ、ビジネスチャンスを逃さないための重要性を再認識しました。 受け手は誰に焦点か? さらに、臨床検査サービスの受け手は患者だけでなく、医師やその他の医療スタッフなど多岐にわたるため、どの受け手に焦点を当てるかを考慮する際にロジックツリーが有効に活用できると感じました。実際、臨床検査のプロセス改善においては、層別分解を用いて「人」に関する問題と「設備」に関する問題に分けて検討するという具体的なアプローチが示唆されており、実務の現場でも役立つと実感しました。

データ・アナリティクス入門

MECEの呪縛から解放される方法

データ収集と分析の重要性は? 日頃からデータ収集、分析、仮説設定、実行サイクルのスピード感を大切にしていました。しかし、「MECEを意識し過ぎず、時間をかけすぎないこと」を講義で聞いて、今後の業務においてもこの点を意識し、実践していきたいと考えました。 効率的な仮説設定と実行方法は? 特に、MECEや分析そのものに過度な労力を費やすのではなく、分析結果を基にした仮説設定、そして何より迅速な解決策の実行と行動に焦点を当てたいと思います。このようにして得られた新たなデータの収集→分析→仮説設定→実行のサイクルをより早く回していくことに注力したいと考えています。 MECE活用術と業務への応用法は? さらに、MECEについては、大項目から小項目へとプロセスを意識して分析項目を洗い出す習慣を、明日から日々の業務の中で身につけていきたいと思います。また、分析にかける時間を事前に設定し、それをもとに効率的に進めていくことも、明日から実施していきたいと考えています。

データ・アナリティクス入門

数字で読み解く成長の軌跡

定量分析の鍵は? サンクコスト、定量分析、MECE、ロジックツリーという手法について学びました。定量分析では、データのどこに注目し、どこを比較するかが重要であることが分かりました。特に、①インパクト、②ギャップ、③トレンド、④バラつき、⑤パターンの各視点からデータの意味合いを読み取ることに注力しました。 MECEの意味は? また、MECEに関しては「もれなく、ダブリなく」に分けるだけでなく、意味のある切り分け方が重要であることを理解しました。この考え方を基に、現状と理想のギャップを明確にし、具体的な行動につながる方向性をメンバーに示すことが求められると感じました。 課題解決の道は? さらに、現状の課題として、分析結果の共有時にメンバー間で理解のずれが生じたり、行動に直結しない点が挙げられます。なぜこのような分析が必要なのか、そこから得るべきものは何か、そして課題の解決につながる具体的な実施方法について、今後さらに明確にしていく必要があると感じました。

データ・アナリティクス入門

仮説思考で切り拓く成長への道

仮説検証はどう進む? 問題解決に取り組むためには、複数の仮説を立て、それぞれを短いスパンで検証することが大切です。仮説設定の際には、3Cや4Pといったフレームワークを活用することで、より多角的かつ論理的にアプローチできると感じました。 固執をどう克服する? 私自身の業務では、課題に直面すると日々の経験に左右され、一つの可能性に固執してしまう傾向がありました。仮説はあくまで出発点であるため、複数の視点から検討する姿勢が重要だと学びました。今後は、対策を立案する前に一度立ち止まり、慎重に仮説を設定することで、論理の偏りや抜けを防ぎ、より精度の高い対策に結びつけたいと思います。 書き出す仮説の意義は? また、分析の材料となるデータ収集に先立ち、まずは課題に対する仮説を書き出すことが基本であると感じました。3Pや4Cのフレームワークを利用し、俯瞰的に課題を捉えることで、決めつけに陥らずに検証・結果のプロセスを慎重に実行する姿勢が大切だと再認識しました。

データ・アナリティクス入門

思考が変わる!分析への新挑戦

新たな視点って何? 短い期間ではありましたが、今まで知らなかった新たな視点と、分析の基礎的な部分に取り組む機会を得ることができました。この経験により、従来エクセルでグラフを作成することだけが分析だと思っていた意識を改める大切なきっかけにもなりました。 切り口をどう見る? また、改めて切り口や最終的に求める結果を明確に認識する重要性を実感しました。言われたことをこなすのは当然ですが、それだけでなく、どのような追加の分析が可能か、現在の活動がフレームワーク上で重複していないかを考えるようになりました。 未来の分析はどう? さらに、サイトなどを通じて他の場所での売り上げ分析の出し方を学び、今後自分が目指すべき方向性を掴む機会にもなりました。分析は過去のデータを用いることが一般的ですが、未来を見据える分野での活用を考える際、歴史上の革命と呼ばれるタイミングで起きた出来事を参考にすることで、役立つ知見を得られるのではないかという考えに至りました。

データ・アナリティクス入門

平均だけじゃ見えない学びのヒント

平均値の弱点は? ビジネスや日常生活のさまざまな場面で代表値として利用される平均値ですが、実は大きな弱点があります。平均値はデータのばらつきを反映しておらず、同じ平均値でも、データの大半が平均値に近い場合もあれば、極端に大きな数値と小さな数値で構成され、平均に近い値が存在しない場合もあるのです。 重要要素は何? 苦情処理以外でもデータを活用する可能性は十分にあります。これまで、インフォメーションのヒットワールドでは似たような事例がいくつか見受けられましたが、どの要素が最も重要なのか、またすべてのデータを採用するのは現実的ではないと感じています。したがって、状況に応じてデータの加工が求められるのでしょう。 問い合わせ改善は? 一時的に問い合わせ内容を収集し、お客様が特に関心を寄せる内容を反映することで、その部分のサービス提供に工夫を凝らす考えです。さらに、第三者にこのデータを提供し、PADなどに入力することで、案内の効率化が期待できるでしょう。

「データ・アナリティクス入門」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right