データ・アナリティクス入門

4視点で読み解く問題解決のコツ

情報収集の課題は? 収集したデータは、そのままでは問題解決に活かすことが難しいと感じました。なぜなら、目の前にある情報に左右されやすく、都合の良い情報だけを集めて判断が偏ってしまうリスクがあるからです。 問題整理の手法は? また、【What】【Where】【Why】【How】というステップで問題解決を整理する考え方は、非常に効果的だと実感しました。これはデータ分析に限らず、さまざまな事象を体系的に整理する上で役立つ手法です。たとえば、製品企画や業務提案に取り組む際、どの切り口からアプローチするかの起点となるため、有用だと感じました。 提案の差はどう? 最近の新しい業務提案にあたっても、同様に【What】【Where】【Why】【How】で整理する必要があります。ただし、提案内容が【How】だけに偏ってしまう傾向があるため、MECEを意識して全体をバランスよく整理することが重要です。さらに、金額(HowMuch)や期間(HowLong)といった具体的な要素も含めて考えることで、より実践的な問題解決が可能になると感じました。

データ・アナリティクス入門

仮説力が拓くあなたの未来

仮説をどう検証する? 仮説を検討する際は、決め打ちせずに複数の仮説を出すことが大切です。加えて、それぞれの仮説が補完し合い、異なる視点からの切り口を持つことを意識しています。自分の知見や簡単な検索だけに頼らず、3Cや4P分析などのフレームワークを活用することで、より精度の高い仮説が構築できると改めて実感しました。 提案の鍵は何? また、担当しているお客様に提案を行う際には、企業が抱えるビジネス課題やそれに対してどのような提案が有効かを日々考えています。しかし、時間の制約からホームページや業界情報の簡単な調査だけで済んでしまうこともあるため、本講座で学んだフレームワークを活用し、複数の仮説を立てる基本に立ち返ることを意識しています。 問題解決の秘訣は? 特に、問題解決のための仮説設定プロセスが非常に有効であると感じました。問題は何か、問題の程度はどれほどか、どこに原因があるのか、なぜその問題が発生しているのか、そしてどう対応すべきかという一連のプロセスをしっかり分けることで、仮説思考をより深めることができると考えています。

データ・アナリティクス入門

数字で読み解く現場改善の秘訣

データ分析はどう理解? データ分析の手法について学び、既存のメソッドを活用することでデータ内に潜む意味を解析できることを理解しました。ただし、MECEの設定基準やその手法についてはまだ不明な点があるため、今後は確認を重ね、分析力の向上に努めたいと考えています。 現状のITは十分? また、職場で業務改善を担当する中で、現在の環境では活用可能なITリソースが十分に利用されていないという認識に至りました。単に使い方や技術的な問題だけでなく、業務の種類、内容、工数、手順などが十分に把握されないままツールが導入されている可能性を感じたため、まずは自身の置かれている環境の理解を改めて確認する必要があると実感しました。 業務改善の手法は? 今後は、職場内の業務項目、分類、関連する法令、関わるステークホルダー、工数、作業手順をリストアップし、最適なツールの選定や作業方法の見直しにつなげていく予定です。具体的には、現在使用している掲示板の改善に向けて、上記の内容を全員に再認識してもらうための作業と、その手順書の作成を進める考えです。

データ・アナリティクス入門

数字に秘めた学びの軌跡

データの真意は何? 実際のデータをただ眺めるだけでは、その背後にある示唆を十分に引き出すことは難しいです。データの意味を正しく理解するためには、適切な分析手法を用いる必要があります。 率の活用でどう変化? 単純な数字の比較だけでは良し悪しが明確にならない場合もあるため、「率」という指標を活用することで、より深い理解が得られることがあります。 体系的整理は有効? 問題の原因を探る際には、直感だけで原因を挙げるのではなく、体系的なフレームワークを使って整理することが効果的です。この方法により、抜け漏れなく各要素を洗い出し、論理的な仮説を立てやすくなります。 最適案の選び方は? また、複数の選択肢から最適な案を選ぶためには、コストや効果、運用負荷といった各比較軸に重みをつけ、数値化する手法が重要です。これにより、客観的な評価が可能になり、意思決定の質が向上します。 業務判断はどうなる? 日常業務においても、フレームワークや評価軸を意識して活用することで、論理的かつ効率的な判断を行うことができるようになります。

データ・アナリティクス入門

ロジックツリーで問題解決!私の成功体験

問題解決のプロセスをどう進める? 問題解決のプロセスは、WHAT・WHERE・WHY・HOWの順で考えていくことが重要です。特に、WHERE・WHY・HOWを考える際にはロジックツリーを活用してMECEに分解することが有効です。分解の方法には層別分解と変数分解の二つがあります。 キャッシュフロー改善の手法は? 事業の課題に対する対策を検討する際、この手法は非常に役立ちます。例えば、「キャッシュを黒字化したい」という課題に対して問題の原因を特定することができます。ロジックツリーを用いて、営業キャッシュフローを改善するのか、投資キャッシュフローを改善するのかといった視点や、どの製品が特に原因となっているのかを特定することができると考えました。 過去の実績から何を学ぶ? キャッシュ改善(WHAT)という視点において、まずは過去の実績からどの項目に特に原因があるのかを探り、特定の製品や項目に対して大きな変化がある部分を特定したいと思いました(WHERE)。その上で、それが起きている原因を特定し、対策について検討する計画です。

データ・アナリティクス入門

実務で使える統計の知恵

代表値をどう捉える? 代表値として頭に浮かんだのは平均値と中央値でしたが、実社会では加重平均などさまざまな平均値が活用されている点にあらためて気づき、体系的に学ぶ重要性を感じました。また、標準偏差がばらつきを示すという理解はあったものの、計算方法や2SDルールについては改めて理解を深めることができました。 要因分析をどう活かす? 障害分析の要因分析においては、単に平均値だけを利用するのではなく、取得できる数値情報それぞれの意味を理解した上で、加重平均や幾何平均など適切な手法を用いる必要があると感じました。一方で、分散については現在の業務で具体的にどの局面で利用できるかはまだ明確ではありませんが、基本的な考え方として頭の片隅に置いておくべきだと感じました。 今数値はどう使う? まずは、現在扱っているさまざまな数値を見直し、現状の利用方法が適切かどうかを確認する必要があると考えました。また、まだ導入できていない分散についても、新たに算出することで別の視点が得られる可能性があるため、再度検証する必要があると感じています。

データ・アナリティクス入門

論理で切り開く自分革命

状況整理の意義は? 直面している状況を具体的に整理し、何が問題なのかを明確にするプロセスが非常に役立ちました。特に、あるべき姿(To be)と現状(As is)のギャップを定量的なデータをもとに洗い出すことで、客観的に問題点を把握できるようになったと感じます。 課題の対処法は? 何から取り掛かるべきか迷ったときは、What(何が)、Where(どこで)、Why(なぜ)、How(どうやって)のステップを参考にすることで、論理的に整理しながら課題にアプローチできました。たとえば、収支の問題に直面した際は、売上と費用に分けてどこに課題があるのかを、ロジックツリーを活用して可視化する手法が有効でした。 学びや実感は? また、クライアントが提示する課題が本当に解決すべき問題であるかを見極めるために、内部の上位者とのディスカッションを通じて仮説を壁打ちする機会が持てたことは、より良い提案や新たな切り口を考える上で大いに学びとなりました。これらの経験は、問題解決の手法の幅を広げ、実務における対応力を高める大きな糧となっています。

データ・アナリティクス入門

問題発見力を鍛えよう!課題形成の基本

問題発見力を高めるには? 問題を発見し、その問題点を把握する力、すなわち問題発見力が重要です。ありたい姿と現状のギャップを見える化し、課題形成力を高める必要があります。現状を定量的・定性的に把握するためには、数値化や見える化が欠かせません。目的や仮説をイメージしつつ、行ったり来たりしながらも、ゴール目標に向けて時間軸を持って到達することが大切です。 採用市場で競争優位を得る方法は? 採用市場の変化においては、問題発見と課題形成のプロセスが重要です。この過程で優先度や重点化の思考を入れ、重要性や緊急性の観点からもデータを分析します。それによって、競合他社との優位性を評価しながら、効果的かつ先進的な人材獲得の取り組みを推進することができます。 幸せのため働く姿勢の意義は? 「誰かの幸せのために、まっすぐはたらく」という考え方を体現し、シンプル、オープン、フェアの観点から積極的に採用市場を分析します。将来の基幹人材の獲得を目的に、ゴール(6月)から逆算してセグメントごとの実行計画を立案・推進することが求められます。

データ・アナリティクス入門

データ分析で見つけたWEB改善の秘密

WEBマーケで目指す成果とは? 私の業務はメーカーのWEBマーケティングに関するものであり、そのミッションは新規ユーザーをWEBページに集め、営業に引き渡すことで売上に貢献することです。具体的には、WEBページの閲覧状況を分析し、サイトの改善に役立てています。分析するデータには閲覧URL、流入キーワード、お問い合わせフォーム遷移率、その後の商談化率、売上金額などがあります。 分析の目的設定の重要性 分析においては、まず目的を明確にし、その目的を達成するために必要なデータの選定とどのように加工・分析するかを検討します。やみくもにデータを分析しても意味がないため、仮説を立てた上で分析を行うことが重要です。 業務スキルをどう活かす? 学んだことを業務に活かすために、まずは分析のフレームワークを学び、それを活用できるスキルを身につけました。グループワークを通じて、わかりやすく伝えるスキルも向上させ、学習を業務に積極的にアウトプットしています。これらのスキルと知識を活用して、より良いWEBサイトの作成と改善を目指しています。

データ・アナリティクス入門

売上アップの鍵は原因分析と多様な選択肢

課題解決のプロセスとは? 課題解決の近道は、原因をプロセス分解してアプローチすること、そしてボトルネックをきちんと把握することにあると思いました。また、正解がない中できちんとした判断基準を持ち、複数の選択肢を視野に入れておくことが重要です。 売上向上のための出発点は? 売上が上がらない理由の一つとして、ABテストを行わずに出来上がった広告を動かしたことが挙げられます。時間や様々な制約があったとしても、きちんとテストを行うべきだったと再認識しました。この経験から、原因をしっかり考え、複数の選択肢をイメージする必要性を感じました。 リブランディングの展望 現在、リブランディングも視野に入れ、分析や情報の精査をしています。売上が上がらなかった理由はぼんやりと見えてきているものの、説得力には欠けている状態です。これまでの考え方(what、where、why、how)を踏まえながら、原因をプロセスを追って分析していきたいと思います。そして、一つの選択肢に固執せず、複数の選択肢を検討しながら今後の展開に活かしていきたいです。

データ・アナリティクス入門

数字と仮説で描く成長ストーリー

実践と検証はどう感じた? ライブ授業では、これまで学んできた内容の復習と実践演習ができた点がとても良かったです。データ分析においては、単純に数字を眺めるのではなく、比較を用いてしっかりと検証し、問題解決のプロセスに沿って取り組むことの大切さを実感しました。また、仮説を立ててからデータ収集を行い、やみくもな分析ではなく、数字の根拠に基づいたストーリーを構築する重要性を改めて認識しました。 施策はどう整理する? 今年度のマーケティング施策の振り返りにおいては、まず仮説をしっかりと立て、その後に問題解決のプロセスに沿って必要なデータを収集し、分析を進めています。さらに、来年度の施策を検討する際も、予め仮説を整え、後でデータ分析がしやすい状態で施策を実施する計画です。 仮説と比較で何が判明? 現在、各メンバーに仮説の策定を依頼しており、分析に必要なデータを収集する段階へと進んでいます。集めたデータを比較することで、成果が出た施策の要因や、あまり効果が現れなかった理由について、具体的な考察を進めていく予定です。

データ・アナリティクス入門

仮説で切り拓く成長の道しるべ

ゴール設定はどう? 分析のゴール設定を常に意識し、単にデータ分析が目的化しないように気をつけます。仮説を立て、比較を通じてゴールにたどり着くプロセスを重視し、適切なデータの平均などの指標を選んでいく必要性を感じています。また、比較箇所以外の条件を統一しながら原因箇所を明確に捉えることも大切だと考えています。 複雑データはどう扱う? 人事業務では、多様な角度からのデータが関わるため、分析が目的となって袋小路に入ることが多かったと振り返ります。さまざまな要素が複雑に絡み合って事象が発生している点を念頭に置きつつ、常に分析のゴールを設定しそのゴールに向かって捉え続けること、そして仮説を立てる力を養うことを今後の課題にしたいと思います。 低評価の理由は? まずはエンゲージメント向上を目的とした取り組みから始め、低い評価要素の抽出や、それぞれの項目に対して低評価の理由について仮説を立てながら分析を進めていきたいと考えています。さらに、数値の高い部署と低い部署を比較することで、より具体的かつ実践的な分析を行う方針です。

「データ・アナリティクス入門」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right