データ・アナリティクス入門

ひたむき仮説で未来を創る

仮説設定の意義は? 講座を受講して、データ分析のテクニックを学ぶことができました。しかし、分析そのものはAIに任せることが可能であり、本当に人間に必要とされるのは、データ分析の目的を明確にし、適切な仮説を設定する能力だと実感しました。正解に飛びついてしまいがちな思考停止の傾向を反省し、より良い仮説を見出すために、あきらめずトライ&エラーを重ねていきたいと考えています。また、当たり前を疑う力や、本質的な課題を見極める力、さらには分類のスキルを養うことの重要性も感じました。これらは次週以降や実践の場で活用していきたいと思います。 内部監査の視点はどう? 私は内部監査を担当しており、より鋭く価値ある提案ができるよう、今後はさらに良い仮説を立てる努力を重ねるつもりです。自分の考えや視点の狭さに日々反省しながら、「この事実から何が言えるのか」という問いに徹底して向き合っています。 現場改善はどうする? また、狭い視点に陥らないために、マネジメント視点やクリティカルシンキングを意識するとともに、現場の状況を十分に踏まえた提案ができるよう努めています。具体的には、何が問題なのか、どうすれば現場が改善されるのかをデータを裏付けに、しっかりと整理して提案していきたいと考えています。

データ・アナリティクス入門

初挑戦A/Bテストで効果実感!

A/Bテストの魅力は? A/Bテストについて初めて知り、その有用性を実感しました。特にキャンペーンやPR施策の効果検証において、どの広告媒体が最も有効か、施策の目的を達成できるかを検証するのに非常に役立つと感じました。目的と仮説を明確にすることが重要であると同時に、関係者間で共通認識を持つ機会にもなると学びました。また、季節や傾向の変動を避けるため、同時期に実施することや、1要素ずつテストすることが必須であると理解しました。 広告パターンの効果は? シンプルで運用しやすく、低コストでリスクも少ないA/Bテストは、現在実施中の交通系ICカードを活用した各種キャンペーンのPR施策に早速活用したいと考えています。具体的には、広告内容を3パターン程度用意し、どのパターンが利用者に最も訴求するのか、現状とテスト後のクリック数を確認して効果を見極めたいと思います。 投稿時間はどう検証? また、広告を投稿する時間帯についても現状はほぼ午前に固定しているため、午後に投稿した場合のクリック数や、電子マネー決済金額の変化などを検証したいと考えています。さらに、ターゲットを絞り、例えば会社帰りの会社員を意識して午後(夕方)の投稿に変更するなど、仮説を立てた上で効果検証を進める予定です。

データ・アナリティクス入門

データ分析で社会課題を解決する心得を学ぶ旅

分析の本質を学ぶ意義とは? 講義開始直後から、分析の本質について明確に示されるので、動画の解説が頭にスラスラと入りました。まず、分析の本質は「比較」であり、適切な対象を比較することが重要です。迷ったときは、分析の目的に立ち返ることが大切で、その際にはデータに偏りがないかどうか、「生存者バイアス」に注意することが求められます。このように、6週間の講座を通じて、最も重要な「心得」を学ぶことができました。 仮説設定の流れをどう進める? 私は、社会課題に対する「仮説」をもとに、行政などのオープンデータを分析し、数字的な事実を裏付ける仕事をしています。今回は、体系的にデータアナリティクスを学ぶことで、仮説設定や分析対象の選定をスムーズに行いたいと思いました。 データ分析の実践ステップとは? 具体的には、以下のアクションを実行しようと考えています: - データ分析について、チーム内に基礎的な知識を共有する。 - チームメンバーが取り組んでいる社会課題に関連するオープンデータを収集する。 - 仮説を洗い出し、それを裏付けるための数字を設定する。 - 適切な比較対象をピックアップする。 このような手順を通じて、社会課題の解決に向けた効果的なデータ分析を進めていきたいと思います。

データ・アナリティクス入門

問題解決の4ステップで仕事が変わる

問題解決のステップを学ぶ 問題解決には4つのステップがあることを学びました。これらのステップは以下の通りです。 1. What:問題の明確化 2. Where:問題箇所の特定 3. Why:原因の分析 4. How:解決策の立案 このステップで仮説を立てて思考することで、以下の効果が期待できます。 1. 検証マインドの向上と、高まる説得力 2. 関心、問題意識の向上 3. 判断や行動のスピードアップ 4. 行動の精度向上 計算ミスをどう防ぐ? 例えば、給与や退職金の計算業務では、計算ミスが発生することがあります。その際にはまず、正しく再計算することが最優先されますが、今後同様のミスを防ぐためには原因を特定し、再発防止策を考え実施する必要があります。これを行うためには、問題解決の4つのステップが必須となります。 チームへの意識定着を図るには? 自分自身だけでなく、他のメンバーも問題解決の4つのステップを意識して思考できるように指導することが必要です。そのために、今回学んだ内容を毎週開催するチームミーティングで共有し、日々の業務の中でもメンバー一人ひとりがしっかり意識し自分のものにできているかを質問を投げかけることで確認し、チーム全体に定着させていくつもりです。

データ・アナリティクス入門

複眼で見る仮説の世界

仮説の重要性は? 学習前は、仮説を立てることに対して、恣意的または無意識に寄せたデータを収集してしまうのではないかという懸念がありました。しかし、今週の学習で、複数の仮説を立てることの重要性を理解できました。仮説はある程度の網羅性を持つべきであり、3Cや4Pといったフレームワークがその考え方を支えていることに納得しました。 仮説と行動の速さは? また、仮説を立てることが物事のスピードに直結するという新たな視点も得られました。これまで、仮説が誤っていた場合はすべてをやり直すゼロスタートになると思い込んでいたのは、仮説を決め打ちにして一つだけ持っていたからだと、自分の在り方から理解しました。 多様性と仮説の関係は? 担当しているダイバーシティ推進の取り組みにおいて、複数の仮説を活用することは、多様な在り方に対する効果的な施策の切り口が一つではないことと合致すると感じます。一方で、大きな方向性や目的の核がなければ、アイディアが散らばってしまうため、その点は常に意識しておきたいと思います。 検証の進め方はどう? 仮説の検証過程では、恣意的な判断を防ぐためにフレームワークに立ち返り、複数の仮説について必ず他者と対話し第三者の視点も取り入れるよう努めています。

データ・アナリティクス入門

論理で拓く未来への一歩

現在の状況はどう評価? 問題解決には、まず最初に現在の状況と理想とのギャップ、つまり「あるべき姿」と「現状」の差を明確にすることが必要です。このギャップは、分析の際に数値化することで、問題の規模や深刻度が具体的に把握できます。 問題発生の場所は? 次に、問題が具体的にどこで発生しているのかを検証します。問題を細かい要素に分け、見なくてもよい部分を除外することで、焦点を絞りやすくなります。 原因は何だろう? その後、なぜ問題が発生しているのか、その根本原因を徹底的に分析します。そして、最後のステップとして、どのように解決策を実行していくかを具体的に考えます。ここでは、ロジックツリーやMECEの考え方を活用することで、多角的な視点から検討し、説得力のある解決策をまとめることができます。 解決策はどこから? この問題解決の手法は、売上の予算と実績の差異を説明し、対策を検討する際に非常に有効です。問題解決のステップを意識することで、効率よく課題に取り組むことができると感じています。また、これまであまり活用してこなかったロジックツリーやMECEの手法も、論理的な考え方を鍛えるために必要であり、簡単な分析にも応用することで、次第に使いこなせるようになりたいと思います。

データ・アナリティクス入門

数字の背後に輝く発見

統計でどう比較する? 分析は、単なる数値の羅列からその違いを見出すだけではなく、統計的な手法を用いて比較することが大切です。たとえば、平均は代表的な統計手法ですが、平均値だけではデータの全体像を正確に把握できない場合があります。そこで、最大値、最小値、中央値、最頻値などの複数の指標を合わせて用いることで、より明確な違いが見えてきます。また、数値だけでは分かりにくい部分はグラフなどのビジュアルツールを活用することで、視覚的に比較しやすくなります。 仮説は信頼できる? 現状のデータ分析では、まず仮説を立て、その仮説に基づいた統計的手法やグラフを用いて分かりやすい資料作成に努めています。しかし、仮説が常に正しいとは限らないため、偏ることなく中立的な立場でデータを検証し、仮説に反する結果があれば素直に認めて正確に分析することが求められます。 方法はどう変える? また、現行の分析手法や視点を根本から見直すことで、データの収集方法や指標の選定、解釈の仕方まで再検討し、実態に即した新たな気づきを得ることが重要です。その上で、得られた新たな視点をもとに具体的な改善策や施策を立案し、現場での運用につなげることで、分析結果を実効的に活用するサイクルを確立していきたいと考えています。

データ・アナリティクス入門

全体を俯瞰する新たな問題解決法

問題の本質は何? 問題解決に取り組む際、原因から入るのではなく、そもそも何が問題なのか、問題を切り分けたときにどこに課題があるのかという視点を持つことの重要性を学びました。普段はなかなかできない取り組みだったため、新たな視点を得る良い機会となりました。また、思考は訓練によってしか成長しないと感じ、今後も意識的に考え続けたいと思います。 営業成果はどう見る? 営業チームの成果分析においても、この考え方は非常に有用だと実感しています。優れた成果を上げる営業担当者の存在が一因となる場合もありますが、実際には全体を俯瞰することで見えてくる異なる要因が大きく影響していることが多いです。そのため、営業活動全体を見渡し、どこにボトルネックがあるかを正確に把握することが重要だと考えています。 数値の謎は何? また、数値を確認する際も、まずは全体像を把握し、すぐに要因を考え込むのではなく、どの部分に問題が潜んでいるのか、どのような切り口で検討すべきかを検討するプロセスが必要です。そして、切り口が明確になった段階で数値を集計し、分析していくという流れを当たり前にできるように努めたいと考えています。さらに、この考え方をチーム内で共有し、周囲の理解を得ることも大切だと思います。

データ・アナリティクス入門

データ分析の基本を理解し深堀り

分析の基本を理解しよう 分析は比較であるという基本を理解することが重要です。目的や仮説をもとに分析に取りかかること、そして問題解決のステップ(What-Where-Why-How)を意識することが求められます。仮説を立てる段階から、何と比較するかを考えながらデータを集め、それを加工・集計し、ビジュアル化することで発見につなげるという手順が大切なのです。 仮説立案の重要性 現在の業務では、多種多様なデータが提示されることが多く、闇雲に分析してしまうことがあります。ここで重要なのは、仮説をしっかり立てて分析に取り組む姿勢を忘れないことです。 データ収集から始めよう 今後の業務では、どのデータを集めるかという段階からスタートします。その際に、学んだことを振り返りながら全体の設計に取り組みたいと考えています。 フレームワークの活用法 今回の講座は自分にとって納得感のあるものでしたが、人に説明や指導するにはまだ至っていません。復習しつつ、意識して普段の業務に当たることで、講座で学んだ内容を自分のものにしていきたいです。特に、フレームワークについては知識としては以前から持っていましたが、きちんと使用したことがなかったため、今後は積極的に活用していきたいと思います。

データ・アナリティクス入門

比較で照らす課題と新発見

問題はどこに? 分析においては、比較の重要性を学びました。具体的には、問題箇所をプロセスごとに分解し、その中でどこが課題となっているのかを明確にする方法です。業務内容によっては、顧客数や単価、さらには年齢層や競合の視点なども考慮する必要があります。これまでは感覚的に分析していたため、今後はストーリー性を持たせた見通しの立て方が有効だと感じています。 利用動向はどう? たとえば、コロナ前後でサービス利用が減少しているという現状について、一人当たりの利用量が下がっているだけでなく、利用者全体の数や競合の動向も踏まえて比較検討することで、新たな発見が得られる可能性があります。各要素を分解して分析することで、より明確な課題の特定が進むと考えています。 データはどう整理? そのため、まずは現在あるデータをプロセスごとに整理し、「サービス料」と「サービス利用者数」の比較からアプローチを始めます。仮説としては、サービス料に何らかの課題が存在するはずなので、一人あたりのサービス料、最大値と最小値、中央値といった指標を調査し、問題がどこにあるのかを絞り込んでいきたいと思います。さらに、競合するサービスの状況も合わせて検証することで、より具体的な分析が可能になると考えています。

データ・アナリティクス入門

データが拓くビジネスの未来

分析の本質とは? 分析とは、物事を分け整理することと、比較対象や基準を設けて比較することの両面が本質だと感じました。また、データ分析の目的や、どの項目をどのような形であたりをつけるのかという入り口の考え方も学べ、基本的な考え方がしっかりと理解できたと実感しています. 将来の分析戦略は? 今後は、顧客IDを活用して、CRM、Web行動、イベント、購買実績の時系列統合基盤を構築する力を高めるとともに、ビジネスゴールを離脱点や購買シグナルなどの具体的な分析課題に落とし込むスキルを向上させたいです。また、転換率やLTVなどのKPIを定義し、ダッシュボード上でリアルタイムに可視化しながら、閾値やアラートを設計する能力も伸ばしていく必要性を感じました. 実行計画はどう? 具体的な行動計画としては、まずCRM/MAの構造とAPIについて学び、ダッシュボードの運用や自動連携が自在に行えるレベルまで習熟することを目指します。次に、顧客ID基盤を活用してデータの抽出と整形を行い、分析用CSVを定期的に生成できる仕組みを構築します。さらに、RやPythonを用いた回帰分析やクラスタリングなどの手法を実施し、得られた示唆を速やかに施策へと反映できるサイクルを確立する方針です.

データ・アナリティクス入門

数値が導く成長の新戦略

現状を数字で見る? まず、あるべき姿と現状とのギャップを定量的な数値で示すことの重要性を再認識しました。問題解決ややりたいことに取り組む最初のステップとして、具体的な数字で現状を把握することは有効だと感じています。 バランスはどう掴む? また、ロジックツリーの活用についても実践を通してバランスを取ることが大切だと思いました。特に、あまりやりすぎず、適度な範囲で感覚を掴むことが求められると実感しています。 目的は明確か? 現在、支援中のプロジェクトでは、目的が曖昧なために要件が固まらないという問題があります。これは、現状とのギャップを定量的に示せていないことが一因と考えています。一方で、自身の仕事に「定量的に示す」を適用する際には、どの要素を数値化すべきかが課題となっている点も感じました。 目標との差はどう? 自分の戦略作成に関しても、会社から与えられた目標に対してどの程度のギャップがあるかを明確にする必要があると認識しています。そのため、現状の支援プロジェクトのなりたい姿、すなわち目的をより具体的かつ明確にすることが今後の課題です。戦略策定にあたっては、ロジックツリーを用いて、現状とのギャップに起因する問題点を洗い出し、改善策を検討していく予定です。

「データ・アナリティクス入門」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right