データ・アナリティクス入門

問題を見極める力が成長を促す

問題の本質は何か? 最初に重要なのは、「What(何が問題か)」をしっかりと見極めることです。具体的なデータを丁寧に集め、それを基に問題を特定することが肝心です。そして、問題を見つけた後は、その問題がなぜ起きているのか(Why)をよく考える必要があります。よくありがちなのは、「何が問題か(Where)」を見つけただけで、「どう解決するか(How)」に飛びついてしまい、WhatとWhyを飛ばしてしまうことです。これでは、解決策が不十分になることが多くなります。 直感に頼りすぎていない? このような経験から、私はしばしばWhatとWhyを深く考えず、直感に頼って行動しがちだと反省しています。たとえ直感的に問題や解決策が思い浮かぶとしても、しっかりと事実と原因を見極めた上で、効果的なHowを導き出すことを意識します。 データ収集と原因分析のステップ まずは、対象としている状況に関連するデータをしっかりと集め、実際にどこが理想的な姿と比べて差が大きいのかを検討します。次に、その問題の原因が何であるかや、その問題がどのような影響を及ぼすのかを考えます。原因を明確にし、その問題をどのように解決するかを考えることが重要です。このプロセスを日々の中で繰り返すことで、自分自身の考え方を確立していきます。

データ・アナリティクス入門

問題解決力が飛躍的に向上した学び

問題の明確化の重要性とは? 問題解決の4ステップ(What→Where→Why→How)のうち、最初のWhat(問題の明確化)の重要性について学びました。問題の明確化には、ゴールと現状とのギャップを定量的に数字で示すことが大切です。これにより、現状維持でよい部分と強化すべき部分が明確になります。 未来を見据えた戦略とは? さらに、問題がない場合でも、よりよい結果を目指してテコ入れをする際(例えば単価改定や機能追加など)には、現状の状況判断が重要です。また、「もれなくダブりなく」というMECEの洗い出しも欠かせません。 情報共有を促進する方法は? 例えば、自社ECサイトの会員数を120%に伸ばしたい場合、ロジックツリーやMECEを使って会員登録のモチベーションとなる部分を洗い出したり、利用者に行うアンケートの項目を設定する際に役立つと感じました。ロジックツリーを使うことで情報を可視化し、他のメンバーとの情報共有にも役立てられそうです。 過去の例に頼らない新しいアプローチとは? これまで、企画やプロモーションは過去の例を参考に進めることが多かったですが、今後は目的を明確化し、What(問題の明確化)を意識して進めることで、現状の把握に役立て、それを基にした立案に活かしていこうと思います。

データ・アナリティクス入門

合宿で描く未来のマーケ戦略

方向性はどう決める? 来年度に向けた部としての1年間の方向性とTODOを検討する合宿で、今回学んだ内容を活かすことができると感じました。合宿では、現状できていることとできていないこと、そして今後必要なソリューションについて話し合いました。具体的には、今後重要になると予想される広告指標について、各ソリューションごとの導入実績を比較し、2024年の傾向を把握することが求められると認識しました。また、現状のホットなマーケティングトピックから、今後伸びるであろうKPIを仮定し、その上でどのようなソリューションを開発すべきかを検討しました。 情報はどう集める? さらに、分析においては、情報やデータの収集方法が非常に重要であると感じました。普段あまり活用していなかった社内のポータルや事例集なども積極的に利用し、必要な情報が何か、足りない情報はないかを意識しながら、学んだプロセスに沿って分析に取り組んでいくつもりです。 分析の進め方は? また、データ分析の基本として、目的を明確にし、仮説思考でアプローチすること、比較を重視すること、そしてwhat→where→why→howというプロセスで考えることの重要性を再確認しました。これらの考え方を実践することで、より具体的な分析結果が得られると実感しています。

データ・アナリティクス入門

仮説が拓くアイデアの軌跡

結論仮説の根拠は? 仮説には「結論の仮説」と「問題解決の仮説(What/Where/Why/How)」があることを理解しました。結論の仮説に求められるフレームワークは多岐にわたると感じ、例えば4Pや3Cといった手法もその一例であると捉えました。ミュージックスクールの事例からは、結論の仮説を明確に導き出すプロセスが示されていたと理解しています。 データ収集の意図は? また、これまで目の前や世の中にある既存のデータを活用して分析する習慣がありましたが、今回新たにアンケートなどでデータを収集する視点も得ることができました。今後は、どちらの仮説を導くのか、結論の仮説か問題解決の仮説かを意識することから始めていこうと考えています。 結論強化はどうする? 直近では問題解決の仮説を考える機会は多かったものの、結論の仮説を出す場面が少なかったため、あえてフレームワークを意識して結論の仮説を構築する取り組みを強化したいと思います。 事例から何を学ぶ? 企画の提案に際しては、過去のデータのみから示唆を得るのではなく、競合や他社の事例などもフレームワークを活用し、結論の仮説を導き出せるよう努めます。まずは3C分析を意識して活用し、自社だけでなく市場や競合の動向も幅広くインプットすることを目指しています。

データ・アナリティクス入門

数字を超える、比較の妙技

比較と目的はどう考える? 分析において、「比較」と「目的への立ち返り」の大切さを改めて感じました。何かしらの数値をグラフ化して報告するだけでは、かえって分析した気分になってしまい、実際は単なる数字の結果報告に過ぎなかったと認識しています。今後は、目の前の数字だけではなく、適切な比較対象を設定し、分析結果としてしっかり報告できるよう努めたいと考えています。 上司の反応はなぜ? 直近の業務では、状況報告を上司に行った際、好意的な反応を得られず、簡単に取得できる情報だけに依存し、見栄えの良いグラフや表を作成するだけの報告になっていたことを痛感しました。単に数値を並べるだけでなく、それぞれの情報をきちんと比較し、その内容から次の対応や施策を検討できるような報告に改善する必要性を感じています。 次の一手はどうする? そのため、今後の取り組みとして以下の点を意識していきます。 まず、分析の目的を再度明確にすること。 次に、比較する項目や内容について、上司の意見や生成AIのサポートを活用しながら見直しを行うこと。 さらに、定量的な分析だけでなく、定性的な分析も取り入れられるよう検討を進めること。 そして、最終的には目的に沿った次の対応策が検討できるような報告をまとめることを目標とします。

データ・アナリティクス入門

目的再確認で拓く未来

なぜ目的は大切? 分析とは、比較を通して物事を評価するプロセスです。まず、データ収集や具体的な分析を始める前に、はっきりとした目的を設定することが不可欠です。目的が定まらない分析は、結果として次の行動に結びつかず、単なる数字遊びになってしまうリスクがあります。 どのように対象を選ぶ? そのため、目的を明確にし、適切な対象を選ぶとともに、多角的な観点から正しく比較することが大切だと考えます。データ分析に入る前に一度立ち止まり、目的に立ち返る余裕を持つことが、成功への第一歩となります。 どのように傾向を見る? 具体的には、顧客の属性データやアンケート結果から傾向を読み取り、次月以降の施策に役立てています。また、自身の働き方に関しても、どの業務にどれほどの時間を費やしているかを他者と比較し、業務効率の向上を図っています。 どうやって振り返る? このため、毎週金曜日に10~15分間の業務棚卸しの時間を設け、週次および月次での振り返りを実施しています。さらに、1on1などの機会を通じて、業務時間の使い方について他者から意見を聴取し、比較することで、より実践的な改善策を模索しています。一方で、対顧客の分析に関しては、常に目的を再確認し、施策ありきの分析にならないよう注意を払っています。

データ・アナリティクス入門

同条件で実感!比較のヒント

どうして比較するの? 分析の基本は「比較」にあります。しかし、比較を行う際には、正しい対象同士を照らし合わせなければ、正確な結果は得られません。たとえば、単に全体の平均値を比べるのではなく、同じ条件下(Apple to Apple)での比較を意識することが重要です。具体的には、ある施策の効果を評価する場合、対象は施策を受けたグループと、受けていないグループに限定し、その効果が明確に反映されるように設定する必要があります。また、比較を行う際は、外れ値の有無やデータの対象数、そして分析の目的に沿った比較がなされているかどうかにも注意を払うことが求められます。 比較の実践はどう? 現在、売上やマーケティングの集計そのものはしていませんが、常に「比較」を意識しながら、比較対象が正しいかどうかを確認する視点を持つよう心がけています。目的に合った分析であるかを常に考え、比較した結果をどのように的確に示し、他の人にわかりやすく伝えるかという点が大切だと思っています。 結果提示の工夫は? 今週の学習内容については、特に疑問に感じた点はありませんでした。ただし、グラフや推移グラフ以外の方法で、他の人に理解しやすい分析結果の提示方法について、どのような工夫がされているのか知りたいと感じています。

データ・アナリティクス入門

問題解決へのMECE活用術

問題点の把握はどう進める? まず、問題点をきちんと把握し、理想の姿と現在の状況との差を捉えることが重要です。そのためには、物事を様々な角度から分析し、分解する必要があります。平均的に一括りで捉えると、真の問題を見逃す恐れがあります。ここで、MECE(Mutually Exclusive, Collectively Exhaustive)の原則を意識すると、要素を漏れなく重複なく分けることができ、問題の明確化から課題設定がしやすくなります。 数字の状況をどう把握する? 数字の状況や問題点を把握する際には、つい平均で語られることが多くなります。しかし、細部までしっかりと捉えた上でサマリーをすることが大切です。そして、いつでも元に戻れるように、プロセスを明確にしてツリー構造として残しておく必要があります。これを怠ると、感覚的な議論と空論の間を行き来することが多く、物事が進まない原因となります。 視点設定と情報分解の秘訣は? 数字や定量的情報で状況を表し、要素分解を行うことが鍵です。この際、視点の設定が非常に大切ですが、解決したい問題、本来の目標、最終目的を意識し、人に聞きながら自分の考えを伝える形で整理していきます。立ち戻る目的を明確にすることで、偏見がかからないように注意することも重要です。

データ・アナリティクス入門

仮説思考で業務が変わる瞬間

仮説の幅は広い? 仮説を考える際は、正しい答えを一つだけ見つけることが目的ではなく、論点に対する仮の答えとしてフレームワークを活用し、幅広い可能性を検討することが大切だと感じました。決め打ちに陥らず、常に複数の仮説を立てる姿勢が重要です。 仮説の意義は? また、仮説を考えることには、検証マインドの向上による説得力の増強、問題意識の向上、対応スピードのアップ、そして行動の精度向上という4つの意義があると学びました。これらの点は、データ分析にとどまらず、日常の業務においても活かせる有用な考え方だと思います。 難しさはどう? 仮説思考というと難しそうに感じるかもしれませんが、普段の業務で些細な疑問を感じたときに自分なりの原因を考え始めているのであれば、実はすでに仮説思考を実践しているのだと実感しました。今回学んだ問題解決のプロセスを参考に、日々の業務に仮説思考を取り入れることができそうです。 小さな課題は? まずは、短時間で取り組める小さな課題に対して、意識的にフレームワークを活用し仮説の幅を広げることから始めたいと思います。その上で、分析時の適切なグラフ選定や結果の分かりやすいビジュアル化といった、今まで苦手としていた分野の改善にも取り組んでいこうと考えています。

データ・アナリティクス入門

仮説検証で拓く本質への道

本質に迫る秘訣は? これまでは、都合の良い答えに飛びつき、裏付けが偏った分析をしてしまっていたことに気づきました。しかし、問題解決のプロセスに沿って仮説と検証を正しい順序で進め、事実に基づいて判断することで、本質的な課題に早くアプローチできると学びました。 目的の重要性は? また、分析に取り組む前には、まず目的を明確にすることが極めて重要であると実感しました。目的が曖昧だったり、途中で忘れてしまうと、結論を導き出せず成果へとつながりません。定期的に目的を振り返ることで、必要に応じた軌道修正が可能になるという点も大きな収穫でした。 複数視点の意味は? さらに、分析を行う際には、単一の数字や結果だけに頼らないため、比較を行うことの重要性を再認識しました。一つの指標だけでは陥りがちな思い込みを避け、複数の視点から検証することで、説得力のある結論に近づけると感じました。 具体策をどう試す? 具体的な実践としては、月ごとの売上データに実際に触れてみることにしています。これまでは解説付きの資料に頼りがちで、問題点やその対策が本質的に理解できていなかったと感じます。売上の増減に影響を与えている要因を、自部門の活動と照らし合わせながら振り返り、今後の対策へとつなげていこうと思います。

データ・アナリティクス入門

データが照らす学びの軌跡

データ比較の意味は? データの比較を通して、その意味合いを見出す手法として、数字に集約する方法とビジュアル化する方法の2つのアプローチがあることを学びました。 代表値の選び方は? 数字に集約する手法では、まず代表値に着目します。代表値としては、単純平均、加重平均、幾何平均、さらには中央値が挙げられます。また、データのばらつきを評価するためには標準偏差を利用するのが有用です。どの手法を採用するかは、単に数値を並べるのではなく、各数値が持つ意味合いを十分に考慮した上で、目的に見合った適切な評価方法を選択することが重要です。 評価手法は何だろ? 成長率や進捗率の評価では、場合によっては幾何平均が適していることもあります。ただし、実際の業務においては、単純平均や標準偏差による評価が一般的に用いられるケースが多いです。評価の目的やデータの意味合いによっては、中央値や幾何平均も選択肢に入れて、適切な評価手法を考慮する必要があります。 グラフ選びはどうする? また、データのビジュアル化にあたっても、まずその目的を明確にし、適したグラフなどの表現方法を検討することが大切です。目的に合わせたデータの加工や表示の手法を選ぶことで、情報をより具体的かつ分かりやすく伝えることができると実感しました。

データ・アナリティクス入門

課題の核心に迫るMECE思考

原因を見極めるには? 問題の原因を分析する際には、まずプロセスごとに分解し、どこに問題が存在するのかをMECEの視点で明確に特定していく作業が重要だと学びました。このアプローチにより、原因分析なしにどのように解決策にたどり着くかが分からなくなる事態を回避できます。また、特定した原因が実際に問題の根本的な要因であるかどうかを検証するために、他の条件を極力同一に保った上で、原因がある場合とない場合の結果の違いを確認することが必要です。 なぜ原因を掘り下げる? 監査の現場において、課題を発見した際に「何が、どこで問題なのか」という点(WHAT・WHERE)だけを把握して満足してしまい、なぜその問題が生じたのか(WHY)まで掘り下げられず、結果として効果的な改善提案(HOW)がなされない場合があることを実感しました。今後は、プロセスに沿った課題の特定と原因分析により意識を集中させる必要があると感じています。 仮説検証をどう進める? 今後は、課題の特定及び原因分析の際に、MECEの視点をしっかりと意識し、問題の発生箇所と原因を的確に絞り込んでいきたいです。その際、立てた仮説を決め打ちにせず、データ分析を活用して客観的に検証することを心がけ、より精度の高い改善提案を実現していきたいと思います。

「データ・アナリティクス入門」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right