データ・アナリティクス入門

IT化でバックオフィス革命を達成するための3ステップ

なぜギャップを把握する? 問題解決のステップとして、What, Where, Why, Howは非常に重要であり、これらを順序に拘らず実施することが求められます。まず、問題として「あるべき姿」と「現状」とのギャップを自分自身でしっかりと把握することが必要です。このギャップを数字で表現することが大切であり、その表現によって関係者間で合意を取ることが肝要です。 未来志向でビジョンを描くには? 問題解決を進める際には、「あるべき姿」と「現状」のギャップだけでなく、「ありたい姿」と「現状」のギャップにも注目することが重要です。これにより、問題の根本的な解決だけでなく、会社の成長を見据えた将来のビジョンを描くことができます。 バックオフィスの改善ステップ バックオフィス部門の集約化やIT化を進めるためには、以下のステップを踏むことが効果的です。まず、「現在の課題」を明確にし、「あるべき姿」を具体的に設定します。さらに、会社の成長に向けた「ありたい姿」を描き出し、そのギャップを明確に捉えます。 具体的な手順としては、次の通りです。 1. 問題が何か(What)、そしてその問題がどこにあるか(Where)を明確にする。 2. 「現状」、「あるべき姿」、「ありたい姿」を部門ごとに分け、それぞれを数字(在籍数、残業時間、処理数など)で表現する。 3. 解決策としてどのような体制・ツール(ITシステム等)が必要かを、ヒト・モノ・カネの観点から明確にし、具体的に説明する(How)。 こうしたアプローチを取ることで、バックオフィス部門の課題を効果的に解決し、IT化や集約化をスムーズに進めることができるでしょう。

データ・アナリティクス入門

ゆるっと分析!問題解決のコツ

どうして分解が必要? 問題が起きたとき、まずは「どうすれば」という視点から考えるのではなく、問題を細かく分解して捉えることが重要です。具体的には、まず現状を把握し(What)、その問題がどこで発生しているかを認識し(Where)、なぜ起こったのかを明らかにし(Why)、その上でどのように解決すべきか(How)を検討する流れが求められます。 どのパターンが有効? また、問題解決のパターンは大きく2つに分けられます。一つは、あるべき姿に対して過去の実績が届いていなかった場合、もう一つは、未来の理想と現状との間にギャップがある場合です。これらの状況を整理するためには、ロジックツリーを活用し、「What」「Where」「Why」「How」の観点から一つひとつ問題を解明していくことが効果的です。さらに、情報を漏れなくダブりなく整理するMECEの視点も大切です。 何が運用の障害? 今、営業から導入プロセスに至るまでのオペレーション検討を進めていますが、まだ実際には運用が始まっていないため、各段階で運用面の不備が見えてきています。そこで、まずは現状のフローにおいて何が問題なのか、理想の状態はどのようなものかを洗い出します。その上で、問題箇所を特定し、最適な解決策を考案していく必要があります。 どうやって整理する? 各検討箇所ではロジックツリーを用い、「What」「Where」「Why」「How」の視点で分析を繰り返していくことで、問題を一つずつ確実に解決していく姿勢が大切です。頭の中で漠然と把握しているだけでなく、明確に言語化して整理することで、問題解決への道筋がはっきりと見えてきます。

データ・アナリティクス入門

仮説とデータで見える改善の鍵

比較分析のポイントは? 今回の講義では、業務改善や標準化に取り組む上で、比較分析の重要性を再認識しました。まず、比較の軸として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」という5つの視点を意識することが基本であると学びました。また、問題・目的・問いを整理し、仮説を立てた上でデータを収集・加工し、検証していくプロセスの大切さにも気づかされました。仮説を立てる際には、MECEを意識して常識にとらわれず新しい情報も取り入れつつ、まずはざっくりとした仮説を作成する。その後、必要な検証の程度を見極めながら、情報収集と分析を行い、仮説を肉付けまたは再構築していくという流れが印象に残りました。これらの仮説思考のクセを身につけることが、今後の業務改善に大いに役立つと感じています。 業務の課題は何? また、実際に自分の業務改善に取り組む中で、長年携わってきた業務では「問題」として捉えられていない部分があるのではないかと考えています。そのため、まずは業務にかかる時間や売上といった指標を用い、仮説を立てて検証するアプローチを試みることにしました。具体的には、商談、見積、受注率、輸送費などの中から一つの業務を選び、その業務に要する時間を分析することで、担当者や取引先による差異が見られるかどうかを検証していきます。 数字の読み方は? さらに、仮説思考や全体的な思考力を養うため、以前紹介していただいた『定量分析の教科書』を購入し、数字の読み方や使い方について継続して学んでいく予定です。これからも今回学んだ手法を業務改善に活かし、実践を通して思考の習慣化を図っていきたいと考えています。

データ・アナリティクス入門

データ分析で広がる学びの可能性

問題解決のプロセスは? 解決策を導くためには、まず原因を洗い出し、プロセスに分解して問題に至るまでの過程を確認することが重要です。その過程で、どの部分で問題が発生しているのかを把握します。また、複数の選択肢を設け、その選択肢を根拠を持って絞り込むことが求められます。この際、決め打ちしないように心がけます。 判断基準とデータ収集のポイントは? 次に、判断基準を設け、重要度に基づいて順位づけを行います。分析と合わせ、仮説を立てながらデータを収集し、ABテストなどで仮説検証を並行して実施します。使われなければ知識は忘れてしまいますので、日常的に課題を捉え、原因を探索し、仮説を立てて解決策を考えることを意識することが大切です。 また、日々シミュレーションを意識的に行い、データをどうやって収集するかを考える癖をつけることも重要です。複雑なステップが関係する業務の改善策立案においては、プロセスを分解し、問題に至るまでの過程を丁寧に見直すことから始めるべきです。 複数解決策の評価方法は? 私自身、答えが一つに絞りがちな癖がありますが、複数の解決策を立て、それを判断基準に基づいて評価するステップを実行しようと思います。実行を急ぐあまり、ベターな一つの解決策で進めがちですが、その癖を直すことを目標に業務に当たります。 日常のシミュレーションをどう工夫する? 日々意識的に課題を発見し、シミュレーションを行うことを心がけ、有効なデータとデータ収集方法を考える癖をつけていきます。課題をプロセスに分解することで、本質的な課題へのアプローチに努め、仮説を実際にABテストなどで試すことを実施していきます。

データ・アナリティクス入門

課題細分化で見つけた成功への道標

ロジックツリーで課題を細分化するには? ロジックツリーを活用して課題を細分化することは、ビジネスにおいて非常に役立つと感じました。大きな課題はどこから手を付けてよいかわからないものですが、細分化することで優先順位を付けやすくなり、各課題の重要性に応じて対応することが可能となります。また、漏れなくダブりなく分析することも非常に重要です。分析や解決策に漏れやダブりがあると、無駄な労力ややり残しが生じてしまいます。そのため、MECEの視点で課題解決の計画を立てたり、分析方法を考えることが不可欠だと認識しました。この手法を今後の業務で活用したいと思います。 計画立案の重要性とは? 過去に私が業務課題へ対応した際、初期段階で計画を立てずに場当たり的な解決策を進めた結果、効果が限定的となり、打った策が効果を上げていたかどうかも分析できなかった経験があります。この経験から、最初にしっかり計画を立て、関係者の合意を得た上で解決にあたった方が良いと感じました。今後は、今回学んだロジックツリーの考え方を活用し、業務課題の特定や優先順位付けを最初に行い、効率的に解決策を立案して実行したいと思います。 成長戦略にロジックツリーを活用する方法 私は現在、自社の売上をさらに伸ばし、業務の質を高めるための戦略を考え、実行する部門に所属しています。この業務を担うために、今回学んだ考え方が非常に役立ちます。具体的には、グループ全体の業績、店舗ごとの業績、そして社員個々の業績までを細分化して分析し、業績をさらに高めるための課題洗い出しや対応策の立案に、ロジックツリーの考え方やMECEの視点を取り入れたいと考えています。

データ・アナリティクス入門

データ分析で見つける新たな視点

分析プロセスの目的は? 分析は、目的に基づいて要素を分けて整理し、意思決定に活かすためのプロセスです。重要なのは、分析が迷子にならないようにすることです。目的を持ってデータを収集し、それに基づいて加工・分析を行うことが求められます。分析は比較となり、データの種類に応じた適切な加工法を使って意味を明確にすることが重要です。 視覚化手法をどう活用する? 視覚化の工夫も、分析の際には非常に役立ちます。例えば、n択の選択人数を割合で見る、全体に対する比率や割合を円グラフで表現するといった工夫が考えられます。推移の比較には縦棒グラフが適しており、要素間の比較には横棒グラフが効果的です。 仮説設定がなぜ鍵となる? 分析のプロセスで大切なのは、目的や仮説を明確にすることです。仮説をもってデータを収集し、加工して結果を導き出す過程で、なぜその分析を行うのか(背景)、そしてそのデータから何が言いたいのか(主訴)を明確にすることが鍵となります。また、仮説が誤っていると判明した場合は、分析の進め方や視点を見直し、正しい結論に導くことが必要です。 学んだことをどう実務に活かす? さらに、ライブ授業で学んだTIPSを実務に活かし、具体的なデータの可視化手法に取り組んでみることで、理解が深まります。質的データに関しても、名義尺度や順序尺度といった基本を学び、さらなる分析力を身につけてください。 このように、分析の目的やデータの加工法についてしっかり理解し、視覚化手法を活用することで、効果的な分析が可能になるでしょう。学んだことを実際のデータに適用し、実践を通じて、さらなるスキル向上を目指してください。

データ・アナリティクス入門

論理を楽しむ!ロジックツリー活用術

WhatとWhereを問いかけると何が見える? What、Where、Why、Howのステップを通じて全体像を分析することの重要性を学びました。これまでは問題解決方法(How)だけに焦点を当てていましたが、WhatやWhere、Whyを問いかけることで、これまで気付かなかった不明確な点が見えてくる過程がとても楽しいと感じています。 ロジックツリーで視点をどう拡げる? また、ロジックツリー(MECE)を活用することで、「もれなく、だぶりなく」分類整理や、層別分解、変数分解が可能になり、とても興味深く学びになりました。物事を分解し、細分化することで新しい視点が得られ、それが意思決定や問題解決に役立つと感じています。 日々の業務にロジックツリーを応用するには? 日々の業務を管理する際に、上記のロジックを応用していきたいと思います。まだ具体的にどのキャリアに進むかわからないものの、ロジックツリーを活用することで、課題を整理し、聞き手にとってわかりやすい説明ができるだけでなく、周囲の同意や協力を得やすくなります。プロジェクトマネージメントの仕事では、know-howやプロセスの整理ができていたものの、周囲の理解を求める際の論理的な説明スキルには不足を感じていたため、これを改善していきたいと考えています。 ロジックツリーを習得する方法は? ロジックツリーを日常的に活用し、自分のものとして習得したいです。具体的には、MECEを用いてAIに壁打ちし、アイデアの整理を行います。さらに、メモに書き出し、図にすることで頭の中を整理し、スキルアップのHowツリーを更新していこうと考えています。

データ・アナリティクス入門

新視点!対概念で解く課題の秘密

今回変更する振り返り文章 学びのポイントは何? 今回の学びでは、課題解決のプロセスを段階ごとに整理する方法と、従来のフレームワークにとらわれずに課題の本質を捉える「対概念」という考え方を学びました。先週は3Cや4Pといった分析手法を用いて問題点を洗い出す例に触れていたため、今回の新たな視点は思考の幅を広げる刺激になりました。 対概念の意味は? 「対概念」とは、問題のある箇所とそれ以外の要素を対比しながら考えるアプローチです。たとえば、「ターゲット設定に問題がある」という見方に対し、設定以外に問題が潜んでいる可能性を同時に捉えることで、より柔軟な課題設定が可能になります。 改善案の選び方は? また、今回学んだ内容は、最適な改善案を選ぶために各案をコストやスピード、チーム内の連携といった評価基準で総合的に判断する重要性も再認識させてくれました。具体例として、Webデザインの改修にあたり、内製するか外注するかを検討する場合の評価方法が挙げられ、数ある案から最も有益なものを選ぶプロセスに参考になりました。 A/Bテストの狙いは? さらに、従来の案と新たな案を比較するA/Bテストの手法についても学びました。テスト実施の際は、両案の条件を可能な限り揃え、外部環境の変動にも配慮してランダムにテストを行う点がポイントとされています。 実用性の確認方法は? 自社の業務においては、今回学んだ「対概念」の視点が非常に実用的だと感じています。滞っているシステム改修作業の設計を見直す際、従来のフレームワークに限定されず、柔軟なアプローチで打ち手を検討する一助となると実感しました。

データ・アナリティクス入門

スピード重視の仮説検証で未来へ

数値と定性の評価はどれ? デザイン変更の方法案を、コスト、スピード、意思疎通などの各観点から数値で比較する手法は、とても効果的だと感じました。しかし、実際には数値化が難しい場面も多いため、例えば「大中小」や「◎〇△×」といった定性的な評価方法も有効だと思います。実際、イベントのプランニング月間である6月には、MECEに基づいて項目を洗い出し、これらの評価方法を用いて各案を総合的に比較したいと考えています。 A/Bテストの理解は進んでる? A/Bテストについては、これまで学んできた知識を活かし、解説通りの考え方で演習に取り組むことができました。その後の動画で、ポイントを絞って比較するという視点が紹介され、非常に納得のいく気づきを得ました。以前から社内ではA/Bテストの必要性は認識していたものの、コストを抑えながら迅速に実施する方法が見出せずにいました。今後、部内でのリサーチや議論を重ね、具体的な手法が確立できた際には、今回の学びを活かしていきたいと思います。 行動と分析のバランスは? 最も印象に残ったのは、原因の特定に時間をかけすぎず、実際に行動を起こし、仮説検証のサイクルを早期に回すという考え方でした。これまで、分析にもっと力を入れるべきだと考えていた自分が、ビジネスのスピードとのバランスを重視する必要性に気付かされました。もちろん、分析と実証の双方に適切な時間とエネルギーを割くことが重要だと感じています。具体的には、先輩社員の意見を聞いたり、必要に応じて外部の知見も取り入れながら、約半分の比率で分析を進める方法を模索し、明日から日々意識して取り組んでいきたいと考えています。

データ・アナリティクス入門

ビジネスの答えを導く仮説と検証のサイクル学習

仮説検証の重要性とは? 改めて仮説を立てること、そしてそれを検証することの重要性を学びました。ビジネスには正解がない場合が多いですが、その状況に応じた最適な答えを出す必要があります。そのためには、良い仮説を立て、データを収集し、それを素早く検証するサイクルを回すことが極めて重要です。このサイクルを通じて問題や施策を導き出すことを再認識しました。 フレームワークはどう活用すべき? また、仮説を立てる際にはフレームワークを活用すること、その仮説を検証するためには適切な指標を選び、収集したデータが反論を排除するための情報にまで踏み込めているかどうかを確認することも新たな気づきでした。これまでの経験を振り返ってみると、「仮説~検証」については何となく同じようなことをしてきましたが、仮説が網羅的でなかったり、検証が不十分だったりしました。今後は意識してこれを実行していきたいと思います。 未然防止に役立つ学びとは? 安全衛生活動(事故未然防止活動)にもこの学びを活用します。例えば、ヒヤリハットが年に1回発生している工場と全く発生していない工場では、現状は表面的な差異を見つけて、適当な仮説を立てて施策に結びつけようとしていました。しかし、これからはもっと網羅的に問題を分析し、適切な打ち手に繋げていきたいと思います。 ヒヤリハットの原因を追究するには? まず、そのヒヤリハットが「不安全行動」や「不安全状態」のどちらから発生しているのか、「4M」のどれに起因しているのかなど、問題の発生要素を網羅的に仮説立てします。それが本当にそうであるのか、データやヒヤリングを通して検証していきます。

データ・アナリティクス入門

問題解決のプロセスで人事制度の見直しを劇的に改善した話

問題解決プロセスの課題とは? 問題解決のプロセスについては以前から学習していましたが、日々の仕事で振り返ってみると、実際には使いこなせていないことに気づきました。多くの場合、What(何をすべきか)からHow(どうやるか)に直接飛んでしまったり、Where(どこで)やWhy(なぜ)を考えながらも、しっかりと分解できずに決め打ちに走ってしまうことが多かったです。現在、私の担当業務は「問題発見・提示➡施策提案・実行」の繰り返しであるため、今後は問題解決プロセスを意識して取り組んでいこうと思います。また、層別分解と変数分解という具体的な分解方法についても、新たな気づきを得ることができました。 人事制度見直しのステップは? 現在、社内では人事制度全体の見直しを進めようとしています。その際、今回学んだ問題解決プロセスを適用することで、どこから取り組むべきかを体系的に整理できると感じました。これにより、問題の特定や施策の検討が決め打ちにならず、幅広く論理的に進められるようになります。また、全体のどの部分を考えているのかが見える化されるので、チームでの議論や社内での説明(上司への説明)もしやすくなると感じました。 具体的には、人事制度をどのように分解し、それぞれの要素ごとに現状とあるべき姿のギャップを把握します。どこに問題があり、なぜそうなっているのかの要因を特定し、その結果として施策の検討(人事制度の見直し)も決め打ちにならず、優先順位もつけやすくなります。現状では人事制度が体系的に整理されていないため、まずはこれを機に人事制度のつながりを見える化してから、見直しに着手していきたいと思います。

データ・アナリティクス入門

仮説とフレームワークで導く新発想

仮説の意義はどう捉える? 仮説の意義と4P・3Cのフレームワークの活用について考察しました。現状や現象を整理し、そこから課題を明示する方法としてフレームワークは有効な手段だと認識しています。しかし、設問では仮説の立て方が問われ、その内容が単に問題点や疑問点の抽出に留まっている点に疑問を感じました。仮説を「ある論点に対する仮の答え」もしくは「分からない事柄に対する仮の答え」と定義するならば、現状の把握とその先の打ち手を考察する過程で生じるのではないかと思います。このため、ビジネス上の意味合いに限定して用いるほうが適切であり、安易に「検証」という言葉を使わないほうが良いと考えました。こうした疑問を通じて、仮説とフレームワークの使い分けが整理できたと感じます。 4P・3Cの整理法はどうなる? また、事業計画や事業分析において、4Pや3Cというフレームワークで物事を整理する手法は非常に重要です。思いつきで捉えるのではなく、フレームワークに沿って取りこぼしのない視点で分析することで、発見された課題や問題点が具体的になり、改善策を立案するための基盤となります。さらに、第三者に内容を伝える際にも、論理的に整理された情報は理解しやすく伝わります。 正しい検証はどう進む? 実際の取り組みでは、4Pや3Cのフレームワークを活用した上で、問題点に対して「〇〇ならば▼▼である」という形式で仮説を立て、その上でデータ分析により課題の抽出ができるかを検討しています。これは、問題を具体的なエビデンスをもって示すためのプロセスであり、その後の打ち手の考察へと順序立てて進めることが重要だと感じました。

「データ・アナリティクス入門」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right