データ・アナリティクス入門

多角的思考で拓く仮説の極意

全体視点は必要? 仮説は、全体を見渡す視点を持って立てる必要があります。複数の仮説を構築し、網羅性のある状態を維持することが重要だと感じました。 反省にどう向き合う? しかし、仮説が一度立てられた時点で、それで満足してしまうことがあると反省しています。今後は、複数の観点から仮説を組み立て、観点の漏れがないよう努めたいと思います。 検討のポイントは? 具体的には、課題解決のプロセスにおいて「ヒト・モノ・カネ」や「業務プロセス」といった基本の観点を軸に仮説を検討していくことが効果的だと考えています。また、一度仮説を立てた後には、他に見落とすべき観点がないかどうかを常に問い直す姿勢を持つように心がけたいです。

データ・アナリティクス入門

データを活かす!視覚化テクニック入門

データはどう活かす? データは単にビジュアル化すれば良いわけではなく、用途に応じて適切に使わなければなりません。また、単にグラフに表現された情報だけでなく、その背後や空白の部分からも情報を見つけ出すことができます。さらに、TPOに合わせて代表値の取り方や計算方法が変わりますが、その結果だけで仮説を導き出すことはできません。 難業務の可視化方法は? 現状、私が携わっている業務ではデータを利用したり、数値化・グラフ化する機会があまりないため、自分の業務に適用するのが非常に難しいと感じています。反対に、数値化やグラフ化が難しい業務をどのように工夫して視覚的に示すことができるのか、そうした方法について学びたいと考えています。

データ・アナリティクス入門

多角的視点で拓く仮説の世界

仮説の検討ポイントはどう? 仮説を立てる際には、決め打ちにせず複数の切り口から検討し、最終的に絞り込むことが大切だと学びました。これまで経験や感覚に頼って仮説を組み立てがちでしたが、具体的な切り口を示された項目を取り入れることで、抜け漏れなく考察できると実感しています。また、実験における仮説とビジネス上の仮説の違いについても触れられ、理解がより深まりました。 今後の視点はどうする? 今後は、各切り口ごとに書き出し検討するプロセスを重視し、複数の可能性を広く考慮した上で仮説を選ぶ方法を実践していきたいと思います。自分自身はもちろん、他者の意見を尊重しながら、幅広い視点を活かすことに努めたいと考えています。

データ・アナリティクス入門

仮説と比較で切り拓く未来

分析プロセスの進み方は? 今回の学習では、データ分析の思考プロセスを体系的に学び、特に三つの重要なポイントを意識することができました。まず、仮説を持つことでプロセスが早く進むという点、次に、分析は比較により成り立つという点、そして数値とグラフの取り扱いが肝要であるという点です。 課題解決の秘訣は? また、自己の課題として、筋の良い仮説立案力を磨く必要性を強く感じました。そのため、幅広い関心を持ち、数多くの因果関係に触れることが重要だと捉えています。データ分析は、実際に因果関係を紐解く作業であり、社会に潜むさまざまな関係に目を向けることで、自然と論理的かつ効果的な仮説立案感覚が養われると実感しました。

データ・アナリティクス入門

複数仮説が切り拓く新たな視点

複数仮説は有益? フレームワークを活用することで、仮説作成における2つのポイント―複数の仮説を立てること、そして仮説同士の網羅性を担保すること―が非常に分かりやすくなりました。いくつかの手法を身につけることで、思考が偏りがちなときに役立てられると実感しています。 決め打ちは疑問? また、仮説を決め打ちにしない姿勢の大切さも感じました。これまでは、一つの考えに固執してしまいがちでしたが、フレームワークを使うことで複数の視点から検証し、反論を考慮することが可能になりました。今あるデータだけでなく、必要な情報は自分で収集するという意識を持ち、より抜け漏れのない仮説作りを目指していきたいと思います。

データ・アナリティクス入門

既成概念を超えた発想のヒント

柔軟な発想って何? 既存の考えにとらわれず、引き出しを増やすことが仮説を立てる上で非常に重要だと感じました。 仮説の枠組みは? 3C分析や4Pの概念は耳にしたことがありましたが、実際に仮説を立てる際には意識できていなかったと気付きました。そのため、いきなり案を考えるのではなく、まずどのように考えるべきかを整理する必要性を実感しました。 どう顧客に寄り添う? また、離職者を減らすアプローチや、顧客の課題分析の際に、改めて3Cや4Pの考え方を取り入れる意欲が湧きました。さらに、顧客が自社の分析に必要なデータの種類や、適切な集計方法を提案する際にも、この視点を応用していきたいと思います。

データ・アナリティクス入門

比較の技術が未来を変える

比較技術はどう? 分析において「比較」という考え方が、どのような状況下でも基本となると強く感じました。評価が難しい内容についても、適切な比較を行えば納得のいく結果が得られる点が興味深く、あらゆるシーンで適切に比較を行う技術を身につけることが今後の課題だと思います。 過去データの活用は? また、スケジュールの計画や見積もり作成時に過去のデータを参考にすることはしていましたが、複数のデータや各プロジェクトの特性を考慮する視点が不足しており、根拠が十分でなかった側面がありました。今後は、複数のプロジェクト実績や見積もりを比較検討することで、より説得力のある提案が行えるよう努めたいと思います。

データ・アナリティクス入門

単純平均だけじゃない!学びの深層

代表値選びのポイントは? あまりにも多くの消費者データを見る際、単純平均だけで全体を判断してしまう傾向にあると改めて感じました。そのため、代表値の計算方法を再検討する必要があると実感しています。代表値として単純平均、加重平均、幾何平均、中央値の4つの方法があること、またそれぞれのばらつきを標準偏差で評価するプロセスが欠かせない点を改めて認識しました。 標準偏差の意義は? また、標準偏差の公式は覚える必要がないといわれていますが、その理由についてより深く理解したいと考えています。√の記号に初めて触れたのは高校生の頃のことだったので、改めてその意味や背景について興味を持つようになりました。

データ・アナリティクス入門

軸を変えるデータの魔法

計算法はどう選ぶ? 単純平均は日常的に使っていたものの、加重平均や幾何平均、標準偏差といった手法についてはあまり馴染みがなく、データに合わせた適切な方法で数値を捉えることの重要性を改めて認識しました。何を明らかにしたいのかという目的を明確にし、その目的に合った手段を選ぶことが大切だと感じました。 グラフで現状を把握? また、平均値にばかり注目していた自分に気づき、縦軸と横軸に異なる値を設定して分布のばらつきを視覚的に捉えることで、新たな発見が得られる可能性を感じました。リード獲得チャネルごとの成約率や成約までの期間を、見やすいグラフで表現することで現状の把握に役立てたいと思いました。

データ・アナリティクス入門

仮説が切り拓く未来への一歩

仮説構築で深まる知見は? 仮説を立てることで、課題が具体的に明確になり、さまざまな角度から検討することでさらに深堀りできることを学びました。3Cや4Pといったフレームワークを実務に活かせば、より効果的に仮説を構築し、その検証まで結びつけることができると感じました。 進捗不振の課題再考は? また、売上の進捗が思わしくなかったり、プロジェクトの進行が円滑でなかったりする漠然とした課題に対しても、仮説構築から改善策の立案まで一連の行動を実践できると実感しました。考えられる仮説をもとに関係者と共有し、次のアクションを検討することで、課題に対する立て直しの機会が生まれると考えています。

データ・アナリティクス入門

顧客の本音、次の一手へ

顧客志向の意義は? 顧客志向の重要性を実感しました。単に実績を求めるのではなく、顧客が誰かに推奨したくなる視点が大変勉強になりました。特に、ウォンツから顕在的ニーズを抽出し、要因を深堀することで具体的な打ち手を考える方法を学べた点が印象的です。 新規事業の戦略は? また、現在新規事業に向けた施策を検討している中で、これまでの学びが活かせると感じています。市場の機会や脅威、自社の強みと弱みを把握するためには、全体像を捉える学びが欠かせないと考えています。今後は、ネット上での情報収集や他部署の方々からのアドバイスを参考にしながら、最も効果的な施策を見極めていきたいと思います。

データ・アナリティクス入門

実践!多角的視点で考える仮説力

どの切り口から考える? 仮説を立てる際は、「ヒト、モノ、カネ」といった複数の切り口から検討するよう意識しています。最初は「しっくりこないけどこれっぽい」という回答に終始してしまいがちでしたが、実はこれは「なんとなく」仮説を立て、意識的に体系化して思考できていなかったからだと気づきました。 検証の順序は合ってる? また、課題に取り組むとき、すぐに思い浮かぶ仮説や、データが集めやすい仮説に飛びついてしまったことを反省しています。一度、様々な角度から出した仮説を並べ、順に検証していくというステップを大切にすることで、より論理的で確固たる仮説立てと検証ができるようになりました。

「データ・アナリティクス入門」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right