生成AI時代のビジネス実践入門

生成AIに挑む日々の発見

生成AIの可能性は? 生成AIの基礎を学び、その大きな可能性と能力の高さに驚いていますが、一方で進化のスピードが早すぎて、なかなか追いつけない焦りも感じています。会社では独自の生成AIを早期に導入し、徐々に業務に取り入れる習慣はできつつありますが、いまだ十分に使いこなせているとは言えません。使ってみると期待していた仕上がりと異なる結果になることが多く、結局自分でやり直すケースが多いため、活用が中途半端になってしまっていると実感しています。 GPTsの仕組みは? 講義の中で初めてGPTsについて耳にし、仕組みや利用方法をすぐに調べました。無料版では使いにくい点もあり、有料版を活用する必要があると感じています。しかし、業務では無料版のCopilotや会社独自の生成AIしか利用できないため、今後の活用方法としては一つの課題となりそうです。 チーム戦略にAIは? また、チームの方針や戦略を考える際の壁打ち相手として、あるいは数値やデータの整理において生成AIの活用が有効だと感じています。データ整理が苦手な上にまとまった時間も取りにくいため、生成AIをうまく使うことで、後回しにしていたデータ分析を進められるのではないかと期待しています。まずは業務で使える生成AIの可能性と限界を理解し、期待外れの回答が出にくくなるような工夫をしていきたいと考えています。 壁をどう乗り越える? 初回の講義には、帰宅途中の電車トラブルで参加できなかったのが残念でした。皆さんとの対話から多くの気づきを得られると期待しており、次回のグループワークを楽しみにしています。私自身、業務で生成AIを使うときに「自分でやったほうが早い」と感じてしまうことがありますが、皆さんはどのようにその壁を乗り越えているのか、またはどんな工夫が考えられるのか、ぜひ話し合ってみたいと思います。

生成AI時代のビジネス実践入門

生成AIとGemで切り拓く学び

Gemの使い方は? GemやNotebook LMはすでに業務で活用しており、その便利さを実感しています。特にGemには、これまでお世話になった上司の考え方を反映させたペルソナを設定しており、これにより資料作成の際、抜け落ちがちな観点や予想される質問への対策がしっかりできるようになりました。 授業の学びは? 授業では、ほかの受講者の活用事例を聞く中で、自分では思いつかなかった新たな使い方や視点に触れることができ、今後のGemの改善にも大いに参考になりました。また、生成AIへの投資が今後増加し、ソフトやサービス分野へとその利用範囲が拡大していくという話を聞き、生成AIを活用したサービスの事業プランや具体的な活用事例についてさらに知りたいと感じました。 Gemで業務改善? 業務面では、GemやNotebook LMを有効に活用し、過去に指摘されたドキュメント作成の癖や見落としがちな視点に対応するためのGemを作成しています。これにより、スライド作成の骨子検討、データ分析、財務面のブレストなど用途に分けた複数のGemを活用できるようになり、質の高いアウトプットを生み出すことができています。ただし、業務時間自体には大きな変化が見られず、今後の改善の余地を感じています。授業で学んだメタプロンプティングの精度向上や最適なGem作成の手法を取り入れることで、さらなる業務効率化を目指したいと考えています。 生成AIの可能性は? さらに、生成AIを活用したサービスに対しても大きな可能性を感じています。同じ志向を持つ受講者がいれば、互いに意見を交換しながら新たなアイデアを模索できればと思います。2032年度には現在の8倍以上の投資額になるとの予測も紹介されており、皆さんは生成AIを活用してどのようなサービスを提供できるか、ぜひ考えていただければと思います。

生成AI時代のビジネス実践入門

AIと共に築く成果の未来

AI先端活用の実態は? AIを活用している企業は、従来のやり方から一歩進んだ「別の競技」をしているとも言えます。実際、効果的にAIを取り入れている企業では、下調べや資料作成、たたき台の作成が瞬時に行われ、会議前には論点が整理されているため、1人が3〜5人分のアウトプットを生み出すことが可能となっています。また、試行錯誤の回数が従来の手法に比べ圧倒的に多いという特徴があります。 活用不足の落とし穴は? 一方、AIを十分に活用できていない企業では、ゼロからすべてを考える傾向にあり、会議中に論点が見失われ、資料作成自体が目的化してしまうことがよくあります。さらに、1回の失敗が大きな打撃となり、同じ時間の中での成果にも大きな差が生じています。結果として、AIを使わない企業は、AIによって代替されやすい業務に従事し続けるリスクが高まります。 生成AIの役割は何? ここで重要なのは、「生成AIにできること」を正しく理解することです。自分自身が「やらなくてもよい作業」を明確にし、単に作業を速くするのではなく、人が考える部分を前面に出すことが求められます。具体的には、調査や要約、資料のたたき台の作成、選択肢案の列挙といった作業はAIに任せ、問いを立てたり、優先順位を決めたり、最終的な判断や責任の所在は人間が担うという役割分担です。 会議運営の工夫は? また、会議の前には「AIでたたき台を作成し、会議では判断に専念する」という新たな運用方法が考えられます。さらに、「AIが作成した案をどのように廃棄するか」という議論を通じて、会議そのものの意味や目的が変わっていく可能性も示唆されます。 失敗から学ぶには? 最後に、生成AIを導入しても、うまく活用できない企業やチームがどの段階でつまずくのか、今後の課題として注目される点です。

生成AI時代のビジネス実践入門

仲間と挑むAI革新実践記

仲間と何を感じた? 同じ目的意識を持つ仲間と意見交換できたことが、今回の学びをさらに進める大きなモチベーションにつながりました。また、いくつかの関連動画を視聴することで、これまで漠然としていたAIの定義や歴史が整理され、基礎知識の習得に大いに役立ちました。今後は、自身の業務分野におけるAIの向き合い方や、具体的な導入プランの作成と実行を進めていきたいと考えています。 業務でAIをどう活かす? 現時点では具体的な活用プランまでは固まっていませんが、経理、財務、海外子会社のマネジメントなど自分の業務領域でのAI利用は不可欠であると認識しています。アジア地域の各拠点から理財情報を適時に収集・分析し、本社へ報告する重要な業務において、タイムリーかつ正確な情報処理が求められており、そのためには最小限のメンバーで効率的に業務を進める必要があります。まずは、チームメンバーにAI導入への取り組みを宣言し、意識の転換を促すことから始め、必要最低限のAIツール(例えばCopilot)を用いて試行錯誤を重ねながら改善策を実行していく方針です。 具体策は何だろう? 具体的な取り組みとしては、以下の3点を想定しています。まず、海外子会社との会議議事録の自動作成、次に海外子会社からの報告内容の自動分析と課題抽出、そしてこれらを踏まえて本社向けの報告書(約5種類)の自動作成を目指します。 子供の利用で悩む? また、講義で紹介されたNotebookLMは、効率的に知識を得るために非常に有用だと感じ、早速活用し始めました。一方で、今回の学びを通じ、AIを活用した試みを子供たちが同様に利用することについても疑問を感じました。今後は、子供たちがAIを利用する際の留意点や段階的なステップについても、並行して検討していきたいと考えています。

生成AI時代のビジネス実践入門

AIが開く新たな学びの一歩

AI活用をどこから? 昨年の夏までは、仕事でもプライベートでもAIを全く利用しておらず、自分のAIリテラシーの低さを危機感として感じていました。しかし、世間ではchatGPTをはじめとするAIの普及が急速に進んでいることに気づき、活用法を様々に試行錯誤し始めたところです。昨日の授業ではGemsやメタプロンプティングといった、すぐに実践できるアプローチを知ることができ、大変有益でした。 情報収集の方法は? また、AIの進化が非常に早く、どのように情報収集していけばよいのか困っていた中で、昨日紹介されたボッドキャスト「耳で学ぶAI 、ロボシンク」を早速聴いてみました。移動中の時間を有効に活用できるその内容はとても分かりやすく、今後は毎週定期的に最新情報を取得していきたいと考えています。 実践の壁はどこ? 今後は、まずメタプロンプティングに挑戦してみる予定です。単純な情報収集は順調に進んでいた一方で、スライドや画像の作成においては、自分が求める結果にたどり着くまでに時間がかかり、参考になるプロンプトを探したり調整を繰り返したりする必要がありました。先日うまくいかなかった画像制作にも、再度チャレンジすることで改善を図りたいと考えています。 ペルソナ利用は有効? さらに、ペルソナを設定して資料をレビューしてもらうという方法も、とても実用的だと感じました。提案内容のブラッシュアップや補強に活用することで、より質の高い成果物に近づけるのではないかと期待しています。 意見交換で何が得られる? 参加者の業種や職種が多岐にわたる中、みなさまの現状の活用方法を聞くだけでも大変参考になりました。こういった機会はなかなかないため、今後もグループワークの時間などで意見を交換できれば嬉しく思います。

生成AI時代のビジネス実践入門

組織で挑む生成AI活用の第一歩

組織でどう活かす? 生成AIの仕組みや可能性については、これまで学んできた知識と重なる部分も多く、整理や再確認の側面がありました。しかし、今回改めて考えさせられたのは、生成AIをビジネスにどう落とし込むかという点、特に個人ではなく組織としてどのように活用するかということです。個人レベルでの活用イメージは描きやすいものの、実際の職場では個人情報の取り扱いやセキュリティ、ルール整備など、さまざまな制約があるため、理想論だけでは前に進めない現実を感じました。生成AIの価値は理解しているものの、「自社で何から始めるべきか」「どこまで許容できるのか」という問いに対し、明確な答えを持てなかったことが、この一週間で大きな学びとなりました。 使い方の幅は? 今後は、生成AIを単に「使うか使わないか」という二択ではなく、「どの範囲で使えるのか」「どの業務から導入できるのか」という現実的な視点で整理していきたいと考えています。当社は個人情報を多数扱うため全面的な活用は難しいと認識していますが、個人情報を含まない領域—例えば企画検討、業務整理、マニュアル作成、思考整理など—であれば、一定の可能性があると感じています。まずは安全な領域で小さく試し、効果とリスクを見極めながら、ルールの整備を進めることが重要だと思います。 安心な利用の指針は? また、個人任せにするのではなく、組織全体での明確な指針を設けることで、現場が安心して生成AIを活用できる環境作りにつなげたいと考えています。併せて、私を含む社員全体のリテラシー向上や人材育成にも取り組む必要があると実感しました。そこで、今後予定されている全社でのAI活用会議を契機に、社内への問題提起や意識改革を進めていきたいと思います。

生成AI時代のビジネス実践入門

人とAIが織りなす学びの対話

自分とAIの違いはどう? 自分とAIの回答を比較することで、双方の違いや差異に気づくことができました。思考やアイディアが行き詰まったときには、AIとの壁打ちを活用し、柔軟な発想を引き出していきたいと考えています。 言語化の大切さは? また、相手が人であれAIであれ、「言語化」のセンスやその重要性に気づかされました。AIだからといって雑に指示を出すのではなく、人に依頼する際と同様に、分かりやすく丁寧な指示を心がけることが大切だと実感しています。 人間とのズレはどう? AIは問いや指示に対して的確に答えを出してくれる一方で、人間にはどうしてもズレが生じます。しかし、そうしたズレがあるからこそ、コミュニケーションに面白さや難しさが生まれるのだと感じ、AIだけに依存せず、人との対話も大切にしていきたいと思います。 データが示す信頼性は? さらに、過去のデータを活用して人とAIの回答の差異をレビューすることにより、AIの正確性、信頼性、精度を評価し、その利用価値を検証していく必要を感じました。これにより、AIによる会議資料の作成はもちろん、上層部からの想定質問に対する回答準備など、具体的な業務への応用も検討しています。 AI活用の可能性は? また、業務の棚卸を通じて、普段あまりAIを活用してこなかった分野にも活用の幅が広がる可能性があると考えています。まずはどの業務に優先的に適用していくか、そのプライオリティを明確にすることが重要だと感じています。 対話AIの未来は? 対話型AIコーチング・メンターの是非についても、今後のコミュニケーションや業務効率化の観点から、議論していく価値があると認識しています。

生成AI時代のビジネス実践入門

具体目標で未来を創る生成AI実践記

目標設定はどうすべき? 生成AIを利用する際は、ツール自体を目的とするのではなく、自分がどのような状態になりたいのか、具体的なゴールを明確にすることが大切だと感じました。生成AIをうまく活用するためには、目標の設定と、その目標にたどり着くまでの具体的なプロセスを整理する必要があります。 仲間との交流で何を学ぶ? また、組織内で生成AIを活用できる場面を増やすという思いから参加しましたが、ライブ授業では同じ目的を持つ仲間と交流でき、それが大きな励みとなりました。今後も積極的に皆さんと関わりながら、学びを深めつつ実践へとつなげたいと思っています。 管理職の工夫は何? 私は現在、食品メーカーで営業の管理職として働いています。会議の議事録作成については、単なる記録に留まらず、今後のアクションプランやチェックの視点を加えた内容にする工夫を行っています。また、担当者との個別ミーティングから中長期的な課題を抽出し、緊急性は低いものの重要な問題点を明らかにする取り組みも進めています。さらに、提案資料作成においては、アウトラインから資料化に至るまで生成AIを活用し、チームメンバーがその有用性を実感できる環境づくりを目指しています。 最適な生成AI選びは? 生成AIは、特定の分野に特化したツールが多く、新しいものも続々と登場しています。業務ごとにどの生成AIを選ぶか、またその選択眼を養うために必要な知識や普段からの習慣が求められます。苦手意識なく生成AIを取り入れられる組織になるために、まずは何から始めるべきかをじっくりと考えながら、取り組んでいきたいと思います。

生成AI時代のビジネス実践入門

心動く未来へのAI学習体験

AI体験のポイントは? AIをなんとなく使い始めた頃から、開発の歴史や体系、そしてソフトとハードがどのように連携しているのかというメカニズムについて理解が深まりました。他の受講生との会話を通じて、取り組んでいる内容や改善点、課題に多くの共通点があることが分かり、少し安心する思いもありました。講師の先生からは、AIが最も報酬が高い領域へと進化するというお話を伺い、その意味を今後じっくり確認していきたいと考えています。また、言語化、信憑性の確認、さらにはセキュリティが重要な学びのキーワードであると実感しました。 海外業務、どう進化? 一方、海外インフラ開発の業務に取り組む中で、英文契約や各国政府のエネルギーポリシー文書の要約・分析、交渉方法の助言に加え、企業や政府の調査、さらには財務健全性やコンプライアンス事案の対応といった多岐にわたる業務を経験しています。さらに、AIエージェントを活用していくつかのタスクを任せることで、自分は優先業務に専念できる環境を築いています。また、社内説明資料をパワーポイントで見やすく作成するなど、業務の効率化にも努めています。 感情重視の裏側は? また、最近のAI進化により、知能指数(IQ)よりも感情知能(EQ)が重視されるという点について考える機会がありました。これは、利用側の倫理意識や、AIがエージェントとして活動する際の特殊な行動制限、そして人間のパートナーとしてのAIへの適切な教育(アルゴリズムの設定など)が求められることを示しているのだと感じています。

生成AI時代のビジネス実践入門

言葉で拓く自分発見の旅

言葉で考えは伝わる? 今週の講義では、自分の考えを言葉にすることの重要性を改めて感じました。考えを言葉にすることで、自分の理解を深めるだけでなく、学んだ内容がより明確に整理できると実感しました。 普遍の教訓をどう活かす? また、講義からは普遍的な教訓を引き出すことの大切さも学びました。既に確立されたビジネススキルにある原理原則を、自分の生活や仕事に落とし込み、素直に実践していくことが成長につながると考えています。 自己成長の行動はどう? さらに、講義内容を自分に引き寄せる―つまり、自分の課題や弱みと照らし合わせながら学びを深める必要性も感じました。急激に変化するビジネス環境に対応するためには、自分の成長のためにどのような行動が必要かを常に意識していきたいです。 AI活用はどう試す? グループワークを通じて、AIの活用やその向き合い方について、参加者同士で率直な意見交換ができたことも大きな収穫でした。私自身は今回初めて「メタプロンプティング」という言葉に触れ、まずは日常業務の中でルーチン化された作業を見直し、どのような情報とプロンプトを使用すれば同じアウトプットが得られるかを試してみたいと思います。うまくいかない場合は、AIとの対話を重ねながらプロンプトの改善を図っていく方針です。 基本原則を見直す? 生成AIの時代においても、普遍的な価値を持つ基本原則について、今後も皆さんと意見を交わす機会を大切にしていきたいと考えています。

生成AI時代のビジネス実践入門

理論と実践で拓くAI未来

理論と実践をどう見る? 今回のライブ講座では、理論と実践をつなぐ具体的な活用法を学び、グループワークを通じて多様な視点を得ることができました。企業内で活躍されている方々や起業家との交流から、AIを共通言語とするさまざまな着眼点を得られたことは、企業支援や同業支援の際に大いに役立つと感じています。また、AIに関する近未来的な可能性と現状認識を改める貴重な機会となりました。 情報過多の現実は? 現代は、これまで経験したことのない圧倒的な情報過多の時代に突入しており、その中で「判断の渋滞」をいかに解消していくかが大きな課題です。グループワークでは、同じく一定レベルのAI知識を持ち、向上心あふれる仲間たちと意見を交わす中で、私自身が持っていなかった新たな視点や活用法、そして近未来へのビジョンを共有できたことは大変有意義でした。 未来活用をどう考える? この経験を踏まえ、今後はAIの理論とビジネス実践の両面を更に深く学び、私自身のコンサルティングの半自動化や新規ビジネス展開に積極的に取り組んでいく所存です。もしグロービス経営大学院でAI活用や現場活用について学ぶ機会があれば、ぜひ参加し、さらなる知見を深めたいと考えています。 意見交換はどう役立つ? 今回のライブ講座を通して、同じ方向性を持つ方々との意見交換や着眼点のシェアが、私の新たなビジネス展開の可能性を広げる大きな糧となりました。この学びを活かし、今後も着実に前進していきたいと思います。

生成AI時代のビジネス実践入門

生成AIに挑戦する現場の声

生成AI活用はなぜ進まない? ライブ授業では、他の受講生との会話を通じて、生成AIの活用が十分に進んでいない現状を実感しました。特に、自分が所属する部署だけでなく、自身も十分に活用しきれていないことを改めて認識する機会となりました。 動画学習で何を得た? また、動画学習では会話型演習を通じて、生成AIを使用する際にはクリティカルシンキングが重要であるということと、インプットした知識を実際の業務にアウトプットすることで実践力が養われることが理解できました。 どんな場面で利用する? 私はゼネコンの開発営業の仕事において、生成AIを活用する場面が大きく二つあると考えています。一つ目は、発注者から業界動向や事業推進の方向性についてのヒアリングを受ける際に、回答内容の素案作成や発注者側の本質的な課題の抽出、それに基づいた回答検討に役立てることです。二つ目は、発注者に対する営業活動の一環として、勉強会などの営業方針の検討や提案内容の素案作成に生成AIを利用することです。これまで自分や部下と共に資料を作成してきましたが、今後は発注者の真の課題を踏まえて、説明シナリオや提案内容の作成に生成AIを積極的に取り入れていきたいと考えています。 効果的な方法は何? また、プロンプト作成にあたっては、公開されている様々なノウハウを参考にしながら、実務上で効果的な方法があれば知りたいという気持ちも強く持っています。
AIコーチング導線バナー

「生成AI時代のビジネス実践入門」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right