クリティカルシンキング入門

業務に活かす!伝わる文章力

文章作成の基礎は? ナノ単科を受講する中で、文章作成の基礎から応用まで体系的に学ぶことができました。特に、論理的な構成や情報の整理方法について具体的な手法を知ることができ、実務でのレポート作成や報告書の作成に大いに役立っています。 報告で何が変わる? 学んだ内容は、業務報告や上司へのメール作成において、単に数字や事実を列挙するだけでなく、その背景や要因を整理して伝えることにつながりました。具体的には、情報の根拠を明確にし、読み手が理解しやすい順序で提示する工夫を実践しています。また、表現のバリエーションを意識することで、同じ内容でも説得力を持たせる文章に仕上げることができました。 今後の活用法は? これからも業務におけるコミュニケーションの質を高めるため、ナノ単科で学んだ知識を活用していきたいと考えています。

データ・アナリティクス入門

仮説で広がる学びの未来

仮説思考はなぜ重要? データ分析において仮説思考が重要であると実感しました。しかし、まだ完全に身についていないため、今後の業務の中で積極的に意識し、訓練していく必要があると感じています。理解したつもりでも、実際に言葉にして表現する際には苦労することもありました。 経験則から何が変わる? 今回の学びを生かし、所属する部門で担当している市場動向や契約に関するデータの収集と分析に、従来の経験則に基づく判断から仮説思考に基づいた立案へとシフトしていきたいと考えています。 言語化はどうする? さらに、言語化の訓練を重ねることで、仕事はもちろん日常生活においても仮説思考プロセスを意識して課題に取り組む習慣を身につけたいと思います。そして、適切な結論を導き出すために、さまざまなフレームワークや手法の活用を習慣化していく所存です。

アカウンティング入門

価値を見つめる毎日の学び

顧客の価値は何か? 事業を運営する上で大切なのは、まず対価を支払ってくれる顧客が存在することです。そして、その顧客にどのような価値を提供するかが事業の出発点であると実感しました。仕入れや費用は、あくまで価値提供の手段に過ぎないという認識が改めて必要だと感じています。 振り返りの意義は? また、常に顧客に対してどのような価値を提供できているかを振り返ることが重要です。最新の情報を収集し、顧客に役立つ内容を提供する努力を怠らず、日々の業務の振り返りや学びを意識することが改善への糧となると実感しています。 手段構築の工夫は? 目的を明確にし、そのための手段について検討する際は、柔軟な発想が求められます。従来の定型的なパターンに縛られず、他者の考えを取り入れることで、新たな気付きや発見が得られることに驚きを覚えています。

戦略思考入門

受講生が語る差別化の秘訣

VRIO分析をどう取り入れる? 企業活動における差別化のポイントとして、マイケル・ポーターの提唱する独自性が、とても印象的でした。自社の強みや市場でのポジショニングを正確に把握するために、VRIO分析が有効であるという点に共感しました。自分の事業にこの考え方をどのように落とし込むか、改めて考えるきっかけとなりました。 信頼性向上はどう実践? また、公的な情報提供サイトの事例では、最新統計や制度情報をタイムリーに発信し続けることが差別化の鍵として挙げられていました。具体的には、毎月の更新やテーマに特化した運営、一次情報への確実なアクセス、内部での一貫した記事作成プロセスが重要であり、これらが組織の信頼性につながると理解しました。これらの考え方を自社の活動にどのように反映させるか、今後の経営戦略に役立てていきたいと思います。

データ・アナリティクス入門

平均の壁を超える新たな挑戦

分析プロセスとは? 「分析のプロセス」について、まず目的を明確にし、仮説を立て、次にデータを収集し、最後にその仮説を検証するという一連の流れが紹介されました。代表値として、単純平均、加重平均、幾何平均、中央値が挙げられており、各手法を用いることでデータの中心をどこに置くかを判断します。一方、標準偏差を用いた散らばりの分析は、データがどのように分布しているかを把握する上で不可欠だと理解しました。 手法選びはどう? 実務では、これまで単純平均を頻繁に使用していましたが、その結果としてデータのばらつきを捉えられず、正確な分析が難しいと感じていました。今回の学びを通じて、加重平均や中央値など、状況に応じた手法の選択と活用が重要であることに気づきました。今後は、各手法の特性を考慮しながらデータ分析に取り組んでいく所存です。

データ・アナリティクス入門

数字が導く学びの実験室

ボトルネックはどこ? データをプロセスごとに分解してボトルネックを特定すると、問題の把握が容易になります。各フェーズの転換率を算出することで、定量的にボトルネックを明らかにでき、値が異なった場合でも率に統一して比較することが可能です。また、ある仮説とその対概念にあたる仮説を併せて検証することで、思考の幅を広げ、複数の仮説を判断基準に基づいて評価し、絞り込みを行います。 A/Bテストで何が? A/Bテストでは、比較するグループ間の介入の違いをできる限り絞り込むことが求められます。これにより、広告のA/Bテストや販売実績の評価において、クリエイティブにどの要素が反映されるべきかを具体的に検討できます。施策をプロセスごとに分解し、定量的な評価を実施することで、成功要因や失敗原因を明確にし、次の改善策の立案に役立てています。

戦略思考入門

学びが進化する生成AIの力

規模の経済本当? 規模の経済性については、なんとなく理解しているつもりでしたが、具体的にどの範囲で効果が発揮され、また逆に不経済となるケースがあるかを学び、改めて納得しました。 習熟の変化は? 習熟効果に関しては、これまで自分の業界で当然の現象と感じていました。しかし、生成AIの登場により「急激なイノベーションが習熟効果に大きな影響を与える」という事実を実感することができました。 ネットワーク理解は? また、ネットワークの経済性についても、仕組みを聞くことで再び理解を深めることができました。 業界はどう変わる? 業界によっては規模の経済性を十分に活かせない場合もあると感じますが、生成AIの影響下では習熟効果が劇的に変化しているため、今後はAIを活用した新たな習熟効果の模索に取り組んでいきたいと思います。

アカウンティング入門

損益計算書が導く全体視点

数字の背景は? 損益計算書と照らし合わせながら全体像を捉えるストーリーを構築することが大変意義深いと感じました。なぜそのような数字が出るのかという疑問を持つことで、業務の背景や要因を深く考えるきっかけとなりました。 視野を広げると? また、文章の読み取りにおいて、自分の視野が狭くなっているように感じたため、今後は全体を俯瞰しながら理解を深められるよう努めていきたいと思います。 具体的取り組みは? 具体的には、以下の点を重視して取り組んでいきます。 ① 損益計算書を確認する際、自分が実施している業務との関連性を意識しながらストーリーとして捉える。 ② 数字を読み解くのに時間がかかることを承知の上で、少しずつでも理解を進めていく。 ③ 他人事としてではなく、自分事として積極的に学びの時間を確保する.

戦略思考入門

やらない選択がもたらす気づきの力

最終講義の気づきは? 最終講義への参加により、本講座で学んだ内容を全体的に振り返ることができました。受講生それぞれの関心に基づく着眼点を聞くことで、新たな発見や学びに繋がりました。私自身は「やらない事の選択」が印象に残りました。これは普段気づかない視点を意識させるものでしたが、業務への有用性を考えるとシナリオプランニングの重要性も再認識しました。 事業発展の進め方は? 事業発展の検討にあたっては、シナリオプランニングを実際に試しながら進めていきたいと思います。また、SWOT分析が日常生活でも役立つと感じることができ、私自身はダイエットを戦略的に進めるために現状分析と方針策定の手段として活用しました。何か新しい取り組みを始める際の共通理解の手段として、今回学んださまざまなツールを積極的に活用していきたいと考えています。

データ・アナリティクス入門

データで解く3Cの秘密

3C/4Pの意義は? 別講座で学んだ3C/4Pといった基本的なフレームワークが、さまざまな場面で十分に活用できることを実感しました。まず、データをざっくりと切り出してから眺めることで、課題をもとに仮説立案がしやすくなる点が非常に有効であると学びました。また、3Cに関しては、多少の変形を加えて3つの象限を定義することが重要だと感じています。 仮説はどう構築する? 対応ケースの増減について仮説を立てる場合には、3Cを変形し、関連する要素に置き換えてデータを俯瞰的に分析する手法が考えられます。その視点としては、C:Customer、C:Contact(ケースをあげる人)、C:Customer Engineer(ケース対応する人)といった切り口でデータを整理することにより、具体的な洞察が得られるのではないかと考えています.

戦略思考入門

固定費と習熟度が創る現場革命

経済性と習熟効果はどう? 規模の経済性について学びました。固定費と変動費の違いを正確に分析することの重要性を再認識し、分析を誤ると規模の不経済に陥る可能性がある点が印象に残りました。また、習熟効果についても一定程度理解していたものの、製造現場では人が入れ替わるのは仕方のない事実であるため、個々の熟練度に過度に依存しない設計やマネジメントが求められると感じました。 自動化の影響はどう考える? 製造現場では、自動化やAIの導入により、人が関わる部分が次第に置き換えられています。こうした変化を進めつつも、システムの導入によって新たな不具合が生じる可能性や、重要な業務においては依然として人の習熟度が影響を与える点に注目しています。そのため、こういった課題についても分析し、適宜改善策を講じていく必要があると考えています。

データ・アナリティクス入門

標準偏差で見えるデータの魔法

標準偏差ってどう理解? バラツキを示す標準偏差について、普段利用する機会が少ないためか、初めて触れる際にはとっつきにくい印象を持ちました。学校での成績に用いられる偏差値とは異なるものなので、具体的な事例に基づいて何度も実際に使ってみることが重要だと感じます。 代表値とバラツキの違いは? 一方、単純平均、加重平均、中央値といった代表値は、日常的に利用しているため理解に苦労することはありません。しかし、バラツキに関してはこれまであまり注目してこなかったため、データの特徴把握のためにも積極的にビジュアル化し、標準偏差を意識して利用したいと思います。 どう実践に活かす? 今回学んだ内容を実践に取り入れる際、代表値だけでなく、標準偏差がどのような場面で効果的に使えるのかを具体的に考えながら業務に活かしていきたいです。

50代に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right