データ・アナリティクス入門

問題解決力を育むプロセスの魅力

原因の見極めは? 問題を解決する方法の一つとして、プロセスを分解して原因を明らかにするアプローチがあります。また、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて選定することが大切です。この際には、判断基準の重要度に基づき重み付けを行い、解決策を評価して選択します。 データで何が分かる? データを分析しながら問題解決の精度を高めるためには、ステップを踏んで行う方法や仮説を試してデータを収集し、改善につなげる方法があります。これらのアプローチを組み合わせることで、データ分析をより高度に行うことが可能です。 業務の見直しは? 現在、マーケティング関連の業務をしていなくても、特定の目標を達成するために、行動や業務フローを時系列や工程ごとに分解し、問題点やボトルネックを洗い出すことができます。これらの問題が実際にボトルネックとなっているかは、日々の業務を通じて確認、検証、改善を重ねることが必要です。このプロセスを通じて、実際に成果に結びつく行動を特定することが重要です。データ分析が可能となるよう、数値化された目標や行動(KPI)が設定されていることが重要な前提です。 残業改善のヒントは? 例えば、チームが抱える課題として残業時間の多さがあるとします。この場合、目標を「各スタッフの残業時間を月10時間以内に抑える」と設定し、各スタッフの業務工程を洗い出し、それぞれの業務にどれくらいの時間がかかっているかを分析します。そこから、効率化またはアウトソーシング可能な箇所を特定し、実際に実践することが望ましいです。

データ・アナリティクス入門

小さな気づきが未来を拓く

原因はどこにある? データ分析の各ステップを学んでいく中で、問題の原因を具体的に特定する段階に達しました。その過程では、確かに難しさも感じました。普段、何気なく行っている問題の究明はあいまいな部分があり、必ずしも分析に基づいて進められているわけではありません。たとえば、ある文書に対する口コミに関心を持っても、その口コミの年代や時期、男女比、キャンペーン実施の有無など、詳細な点には踏み込まない場合が多いと感じます。 どう試せばいい? また、動画でも示されていたように、このステップや手法に慣れるためには、身近な事例で実際に試してみることが不可欠です。うまくいかないときには、どの点をどのように改善すればよいかを考え、再度取り組むというプロセスを繰り返す必要があると実感しました。 適用例はどう考える? この手法は幅広い場面で活用できると思いますが、具体的な適用例をすぐにイメージするのは難しい面もあります。日常的には数字を扱っていますが、それらの数字から直接施策や解決策を導き出す機会が少ないため、意識があまり向かないのかもしれません。また、非常に困難な状況や緊急性の高い場面が少ないことも影響していると考えます。 改善の実現方法は? 現職は大きな問題がないため安定しているものの、逆に「こうなればもっと良くなるかもしれない」という改善点に積極的に取り組めていない部分も多くあります。問題と捉えるというよりは、今後の課題として「どのようにすればさらに良い状態になるか」を洗い出し、身近に改善すべき対象を見つけていきたいと考えています。

アカウンティング入門

利益の真実に迫るP/L分析の魅力

利益はどう見える? 儲かっているかどうかを判断する際、P/Lのどこを見ればいいのかが理解できました。特に、事業のコンセプト通りに利益を上げられているかを評価する際には、営業利益に注目するとよいと思います。P/Lの各利益項目を見ることで、安定的な利益なのか、突発的なものなのかを判断しやすくなりました。 薄利多売の工夫は? 例えば、今回のケーススタディとは反対に、薄利多売のビジネスモデルの場合は、販売管理費の削減や粗利をどれだけ残せるかといったコスト意識が特に重要になります。粗利や営業利益、経常利益、税引前当期純利益のそれぞれの意味合いについても理解が深まりました。 過去どう振り返る? 特に役立ったポイントとして、自社のP/Lを確認し、目標とする利益が事業のコンセプトと整合性があるかを確認すること。そして過去のP/Lを振り返り、近年の変化を把握して、市況環境と事業成績を想像してみることです。また、P/Lを見て各会社の稼ぎ頭やその逆を確認することも有益です。経常利益が特に高い、または低い時には、その背景にどんな要因があるのかを調べることも重要です。 数字と実感は? 次に、金額を割合に置き換えて考えることや、事業のイメージとP/Lの内容が一致しているかを確認することが重要です。新聞やニュースで○○利益が過去最高と報じられた際には、他の利益も確認すると新たな洞察が得られることがあります。さらに、前期の投資が今期または将来的にどのように働くのか、その影響が営業利益として見返りを出しているかに注意を払い続けることも求められます。

リーダーシップ・キャリアビジョン入門

リーダーシップで組織を変えるコツ

リーダースタイルはどう選ぶ? リーダースタイルには指示型、参加型、支援型、達成指向型の4つがあります。これらのどれが正解ということではなく、環境やメンバーの特性、そして事業の内容に応じて使い分けることが求められます。私自身、普段のリーダーシップでは参加型や達成指向型をよく用いますが、うまくいかない場合もあります。重要なのは、自分にとってどの型がやりやすいかではなく、どの型を活用すれば組織として最大の効果を発揮でき、メンバーの能力を最大限に引き出せるかを最優先に考えることです。 経験豊富な組織の対応は? 私の部署のメンバーは非常に長い業務経験を持ち、高いスキルを既に有しています。そのような組織環境に新たなリーダーが加わる際には、既にスキルを持つメンバーに対して参加型スタイルで意見を求め、それを基に組織を変革していくことが求められます。しかしながら、高い目標設定や組織のビジョン、ミッションを示すのはリーダーの役割であり、それを明確にし、組織へ浸透させることが重要です。繰り返しビジョンを語ることで、組織内の意識を統一することができます。 どうやって意見を集める? 新たな施策を検討する際には、リーダーが単独で決定するのではなく、必ずメンバーの意見を聞くことを心掛けています。ゆっくりと時間をかけて広く意見を集め、検討を進めることで、決して独断で決定を進めることはしません。検討段階でメンバーとディスカッションすることで、メンバーの参加意識が高まり、その後の運営フェーズでも納得した上で進めることができ、協力を得ることが可能になります。

データ・アナリティクス入門

仮説で切り拓く成長への道

フレームワーク何故有効? 課題に取り組む中で、仮説作成のためのフレームワークが非常に有用だと実感しました。普段は、「〜なんじゃないかな」「このデータだとこんな感じかな?」と何気なく仮説を立てることもありますが、フレームワークを用いることで、考えるべき側面を網羅的に整理でき、より多くの仮説を効率よく導き出せると感じました。もちろん、一般的な枠組み(例:3Cや4P)以外の見方が必要な場合もあり、その都度、自分で検討することが大切だと再認識しました。 過去の仮説はどうだった? 過去の業務では、なんとなく仮説を立てたり、仮説を持たずに作業を進めたりすることがあったと感じています。そのため、今後は以下の点を意識して取り組んでいきたいと思います。 ・常にフレームワークを利用して仮説を作り出すように心がける。 ・過去に読んだマーケティングの書籍などを再読し、その知見を実際に活用する。 ・仕事だけでなく、日常生活においても仮説を立て、検証するプロセスを積極的に取り入れる。 検証プロセスは有効? また、データを単に集めたりビジュアル化するだけでなく、意図的に仮説を立て検証するプロセスを業務に取り入れることで、より論理的なアプローチができると考えています。今後、講義で学んだ具体的な方法をもとに、自主学習を進めながら、疑問点や気になる点を解消していきたいと思います。 新生活どう迎える? なお、来週は新しい仕事に就くための引っ越し作業が重なり、少し慌ただしくなりそうですが、引き続き学習に力を入れていく所存です。

戦略思考入門

ターゲット選定と差別化戦略の挑戦

ポーター戦略の基本は? ポーターの3つの基本戦略には、「コストリーダーシップ戦略」、「差別化戦略」、そして「集中戦略」があります。コストリーダーシップ戦略は、コスト重視で低価格を提供し顧客を獲得する手法です。差別化戦略は、競合が真似できない価値を提供することにより顧客を引き付ける戦略を指します。集中戦略は、ニッチな市場で唯一無二の価値を提供して顧客を獲得する手法です。 差別化の進め方は? 今回、GAiLで差別化について学びました。差別化を考えるには、自社や顧客、市場の分析を行い、継続的な差別化が可能であり、かつ需要が存在することを考慮する必要があります。適切にマッチすれば、収益の向上は見込めますが、情報化社会の現代においては、局所的な差別化でなければ競合にすぐ模倣されてしまう恐れがあります。 ターゲットはどうする? 部署としては、今後の展開において差別化を通じて新たな価値を顧客に提供し、収益を上げる必要がありますが、現時点でターゲットが明確でないため、ターゲット選定が急務です。また、競合分析も未確定であり、多くの要素が不明確な状況です。ただし、戦略のフレームワークの形成方法を学び、応用できるよう準備を整えることが重要です。 仮説検証は効果ある? 仮説思考を用いてターゲットを選定し、その場合の戦略を考えることが必要だと思いました。不確定な状況だからこそ、仮説を立て、その検証を行うことが重要です。フレームワークを復習し、部署が動く際にスムーズにスキームを形成できるよう、準備をしっかり進めていきます。

データ・アナリティクス入門

面倒も味方に!工程分解の力

プロセス分解の意義は? 他の研修でプロセスマネジメントを学んだとき、結果管理だけでは検証が十分に行えず、属人化や再現性の低下が生じることを痛感しました。そのため、プロセスを細かく分解し、深掘りすることで問題点を明らかにし、打ち手の検討もしやすくなると実感しています。一方、実際の現場ではプロセスの分解は意外と難しく、面倒だというバイアスもあって浸透しにくい状況もあると感じます。 見直しの方法は? また、プロセスの見直しには、目的の設定と仮説の立案を同時に行うことが重要です。前提の議論が不十分だと、プロセスを詳細に把握する意義も薄れ、問題抽出やプロセス設計が十分に進まなくなってしまいます。 ガントチャート活用は? 仕事においてマネジメントの役割を担う中で、プロジェクト開始時にガントチャートとプロセスの分解を行うようにしています。これにより、進捗状況が可視化され、遅れや抜け漏れの予防につながり、会話の目線も統一されやすくなります。 ABテストの課題は? さらに、ABテストを実施する際には、条件の検討が十分でない場合、Aを終わらせた後にBに着手する傾向が見受けられます。条件の整備が難しいため、目的と現状の把握を明確にし、ギャップ分析で仮説や課題を複数用意、優先順位をつけた上で詳細なプロセス分解を行うことが重要だと考えています。 効果的な評価方法は? 最終的には、共通の評価基準を作るとともに、アクションプランと期限を設定することで、遅れや抜け漏れを防ぎ、目線を合わせたプロジェクト管理が可能になると実感しています。

デザイン思考入門

バイアスから解放される学びの旅

深い共感を感じる? GAiLで示されていた「深い共感」は本当に奥が深いと感じました。人は認知バイアスを持っているため、つい自分なりの解釈を加え、バイアスに支配された認識をしている自分に気付くことがあります。そこで、これまでの思考回路による判断をやめ、真のニーズや不満、感情を自分自身に「憑依させる」ような感覚で、参与観察を極めていきたいと思いました。これは、自身が取り組む新規企画やコーチング、未来洞察にすぐに応用できると感じています。 他人のバイアスはどう? 認知バイアスには、自分自身のバイアスと他人のバイアスの二種類があると考えています。特に他人のバイアスは厄介で、観察対象者がある意見を述べた場合でも、その言葉は対象者のバイアスを通して表現されているため、真の体験とは異なる可能性が高いです。そのため、真の体験に迫るには、観察者自身が対象に寄り添う必要があると感じます。たとえバックパックの感想を求めたとしても、対象者の現在の感情や体験の背景まで広く理解しないと、誤解を生む恐れがあると思います。 数式は何を示す? 最も大きな学びは、「自分のバイアス」と「他人のバイアス」を意識することにあり、数式で表すなら「v = f(x)」のように捉えられるという点です。ここで「f」は各人の持つバイアス、すなわち思考回路を示しています。この考えを常に念頭に置きながらデザインリサーチに取り組む必要があると感じました。また、質問の仕方一つでバイアスを超えたアプローチが可能になると感じ、その学びを今後の活動に活かしていきたいと考えています。

デザイン思考入門

仮説で解く!みんなの業務課題

なぜ業務量に差が生じた? 現在の業務は減少せず、同じ部署内で担当する業務量に大きな差があるという課題を感じています。この状況について、なぜそのような事態になっているのかを定性分析を用いて仮説を立て、解決に向かわせる方法を考えました。インタビューなどを通じ、単なる業務量だけでなく、その背後にある問題点を明らかにする必要があると考えています。 アンケートから何が分かる? 今回の演習で気づいたのは、アンケートの結果から、経験や年代にかかわらず共通の課題が存在することが分かった点です。この結果は、データをコーディングすることで抽出されたものです。しかし、実際に対処するデータは今回のものよりも複雑で量も多くなるため、分析の難易度は大幅に上がると感じました。また、課題設定において、単に現状の課題を把握するだけでなく、その課題があることによってユーザーがどのような回避行動をとるのかという視点を加えるという新たな発想も得られました。回避行動も一つの課題として捉え、解決策を検討することが求められると学びました。 定性分析で何が見えた? さらに、分析手法として定量分析と定性分析が存在し、特に仮説の構築が重要であることを再認識しました。定性分析は仮説構築に大いに役立つという新たな気づきも得られました。分析結果から浮かび上がった問題について、もし解決が進まなかった場合の条件を設定し、さらに課題を掘り下げる手法も有効であると感じました。なお、解決策を前提にして課題を定義しないという点についても、常に意識して取り組む必要があると理解しました。

リーダーシップ・キャリアビジョン入門

キャリアを磨く時間の大切さを再発見

キャリア観は何だろ? キャリアアンカーという概念を通じて、自身のセルフイメージやキャリア観を振り返る機会を得ました。普段の忙しい日々の中で、これまでの自身の価値観や求めるものを考える機会は少なく、この時間が非常に貴重でした。今後もキャリアを考える上で、定期的にこのような振り返りを行うことが必要だと感じました。 個人と組織、どう見る? さらに、個人のニーズと組織のニーズをうまく調整すること、そして現在の仕事が未来にどのように変わるのかという視点も重要であると学びました。これを踏まえて、今後の業務遂行時に意識し、実践していきたいと思います。 面談の狙いは何? 今はちょうどチームメンバーとの年央面談の時期にあたっているので、キャリアアンカーの考え方を参考にしながら部下の話を引き出したいと思います。ただ単に異動希望を聞き入れるだけでなく、現職や現職務で何ができるのか、個人と組織のニーズの調和というキーワードを活かしてコミュニケーションを深めたいと考えています。 意見はどう整理? また、部下が不満だけを主張するのか、将来や仕事の未来を見据えた主張なのかを見極めながら、アドバイスを行っていきたいと思います。面談では、まず相手の考えを引き出すことが重要ですが、上司として自分のキャリアの目標や取り組みを明確に伝えた上で、キャリアアンカーの考えを取り入れて部下とコミュニケーションしたいです。そして、不満のみをもとにした主張がある場合には、組織のニーズも考慮させ、建設的なコミュニケーションを構築していきたいと思います。

データ・アナリティクス入門

分析を活用した価格設定の秘密

分析の基本とは? 分析とは、比較を通じて事象を理解することです。分析には、数値を基にした定量分析と、事象の背景や流れを検討する定性分析があります。これらの分析は、対象となる要素を分解し、様々な視点から詳細に検討する作業です。重要なのは、データを扱う際に注意が必要であり、異なるものを比較しないようにすることです。すなわち、「Apple to Orange」ではなく、「Apple to Apple」を意識し、見えているものだけでなく、見えていないものも視野に入れながら比較することが求められます。 リゾートホテルの価格戦略 例えば、リゾートホテルにおける宿泊価格の変動を分析する場合、グループ内の直営16施設の過去10年間の売上データを活用することが考えられます。また、旅行サイトの口コミも分析の参考にできます。これらのデータは、特に需要が高まる週末や祝日の売上を最大化するための社内向け資料として活用されます。近年の旅行者数の増加に伴い、これらの変化をデータとして捉えることで、より効果的な意思決定が可能となります。 ダイナミックプライシングの活用 具体的な販売戦略としては、客室は56日前から販売設定されており、分析した資料を元に販売時の価格を提案します。予約の受注数と周辺ホテルの料金を毎週比較し、価格設定の見直しを行います。また、過去10年間の売上データを基に、ダイナミックプライシングを活用して売上が最大化できたかどうかを分析します。このようにして、データ分析を通じて戦略的な価格設定を行うことで、売上の最大化を目指します。

データ・アナリティクス入門

ビジネスにも活きる!ロジックツリー入門

ロジックで課題は見える? ロジックツリーを用いることで、曖昧だった課題や問題が階層分解や変数の使用を通じて、より明確に整理できると実感しました。また、ZoomなどのWeb会議の場で、ロジックツリーを活用しながら板書を行うことで、参加者が意見を出しやすい環境を作り出せることに気づきました。 損切りはどうすべき? サンクコストに関しては、新しい投資手段において、損失が出た場合の「損をしたくない」という心理的なバイアスが損切りを遅らせることがあると感じました。投資した株が収益性を見込めないのであれば、速やかに損切りを行い、収益性が期待できる他の株式に投資することの重要性を再認識しました。 データ選びの秘訣は? 以前、あるAI専業企業の方とお話しした際に「AIに入力するデータが現場の課題に適していないと、どれほど優れたAIであっても成果は上がらない。データ選定には全体の7割ほどの時間が必要」との意見を伺いました。この時、授業で学んだMECEや定量分析、ロジックツリーの重要性を実感しました。今後、工場内での課題解決を目指すAIのデータ選定にも、この知識を活用したいと思います。また、工場での品質管理の発表においても、ロジックツリーやMECEの考え方を活用して資料を作成したいと考えています。 競馬・テニスはどう活かす? また、競馬の予想にもロジックツリーや定量分析を活用したいと思っています。さらに、趣味の硬式テニスの大会後には、クラブの反省会でMECEなどの手法を取り入れられたら効果的だと感じています。

「場合」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right