クリティカルシンキング入門

データから見える新事業の可能性探し

データ分析はどう見直す? 得られたデータをそのまま解釈するのではなく、解析の手間を加えることで新たな理解を得ることが可能です。具体的には、割合や相対値を使ってデータを加工したり、数値をグラフや図に変えて視覚的に理解する方法が有効です。また、多くの視点や切り口でデータを分け、特徴的な傾向を探ることが重要です。この際、単に機械的に等間隔で分けるのではなく、その方法が本当に適切かどうかを常に疑う姿勢が求められます。いくつかの切り口で得られた結果を総合的に考慮する際は、誤った結論に至らないよう注意が必要です。 新規事業の見極め方は? 新規事業テーマを探索する過程では、どのテーマを選定すべきか全体像を把握するために、異なる切り口を試してみると良いでしょう。市場規模、成長率、顧客数、深刻度、性別、年齢、居住地などでデータを分けると、それぞれ異なる見方ができるかもしれません。そして、特徴的な傾向に対しては鵜呑みにせず、一度その信ぴょう性を確認する習慣を持つことが大切です。 情報収集は何を重視? 現在は情報収集やヒアリングの段階ですが、まずは分析に必要な情報をしっかり集めることが重要です。その後、複数の切り口でデータを分け、特徴的な傾向が浮かび上がるかを確認します。ヒアリングを行う時も、聞いた内容をそのまま受け取るのではなく、別の視点や視座で見た場合どうなるかを意識して理解を深めたいと考えています。また、課題がどのように存在しているのかを探る際、ヒアリングした内容を整理することで思考を整えたいと思っています。

戦略思考入門

顧客視点での差別化戦略の鍵

顧客視点が重要なのはなぜ? 差別化戦略を考える際には、競合にばかり気を取られず、まず顧客の視点に立つことが重要だと感じます。差別化戦略において「選択と集中」は大切ですが、同時に複数の施策を実行できれば競争力はさらに高まります。環境は常に変化するため、自社の強みも定期的に見直すことが必要です。しかし、特定の強みで大規模な成功を収めた場合、方向転換は難しく、そうした課題に対応できていない企業も多いのではないでしょうか。 海外での専門性はどう活かす? ITベンダーとして国内外で仕事をしていると、国内では顧客の要望に柔軟に対応しますが、海外では専門性がないと認められません。実際には、複数のIT技術を扱うといっても、全てを深く学ぶことは難しく、場合によっては表面的な対応に終わってしまうことがあります。また、若手社員が勉強しても、次の仕事では別のことを任されると思うと、学ぶ意欲を維持しにくく、成長を実感できないことがあるようです。企業も専門性を重視し、業務を外注することで、社内で一貫した比較や統合を行うように変わってほしいですね。私は、そのような姿勢を企業に対し提案していきたいと考えています。 自身の専門性をどう高める? 幅広く知識を習得しつつ、自分が得意とするAIやデータ分析、ソフトウェア工学の分野では積極的に情報発信を行い、自身の専門性をアピールしています。例えば、2月9日にはAIエージェントについて、2月10日にはGraphRAGについての発表を予定しており、これを確実に実施したいと考えています。

クリティカルシンキング入門

クリティカルシンキングで世界が変わる!

クリティカルシンキングの活用場面は? クリティカルシンキングは、課題解決や上司への提案、説得など多くの場面で活用できる思考法であることを理解しました。特に課題解決の場面では、自分の経験や勘に頼らず、関係する様々な人の立場から課題を見ることで、その本質を探り、より良い解決策を提案できると感じました。ライブ授業の「病院」をテーマにした課題では、病院に関わる人々の視点を変えることで、病院の役割について多様な考え方ができることに気づきました。また、他の受講生から自分にはない視点を学ぶことで、クリティカルシンキングの重要性を再認識しました。 システム要件定義への応用法は? 現在、私は生命保険契約の電子手続き化に関するシステム要件定義作成に関わっており、部下が提案するシステム機能が本当に必要かどうか、管理職として判断を迫られることがあります。今回学んだことを活かし、視点や視座を広げ、顧客・営業・開発者・経営者の目線で機能のメリットとデメリットを考慮することが、より良い判断に繋がると実感しています。 どのように優先順位を考える? 具体的には、部下から提案されたシステム機能の開発要否について、多角的にメリット・デメリットを洗い出し、優先順位を決めていきたいと思います。例えば、顧客目線では便利でも、実際の利用者が少なく費用がかさむ場合は、費用対効果を考慮して開発を見送るといった判断を意識して行っていきます。最終的に、部下や上司に対してなぜその判断をしたのかを説明する際、説得力のある説明ができると考えています。

データ・アナリティクス入門

因果の謎を解く学びの旅

因果と相関、どう考える? 相関関係と因果関係をセットで分析すると、その結果をもとに具体的な打ち手を考えやすくなります。具体的には、因果関係が成立するためには、「時間的順序が正しいこと」「相関関係が存在すること」「第三の要因が介在しないこと」という3つの条件を満たす必要があります。 時系列分析ってどう? また、過去のデータを活用して将来を予測する際には、時系列分析が非常に有効です。これに加えて、パレート分析やウォーターフォールチャートといった手法も、データの分析や可視化に役立ちます。 データ収集は大丈夫? データ収集にあたっては、対象が意味のあるものであるか、アンケートや口頭での聞き取りといった方法が適切に実施されているかを確認することが重要です。 契約商品の予測はどう? さらに、契約商品同士の相関関係や因果関係を把握することで、因果関係が認められる商品から、契約しやすい商品を予測して提案することが可能になります。特に、履歴などの時系列データを活用して、時系列データの4つの要素を理解し、使用するデータが何に該当するかを明確にした上で分析を行うことが求められます。 定義変更、何をチェック? 最後に、データの収集段階では、データの定義が変更されていないかどうかを確認した上で、顧客情報や各種商品の契約状況をリスト化し、各種商品間の相関係数を算出します。もし、相関が認められる商品同士に因果関係が存在する場合は、その因果構造に基づいた商品提案を検討することができます。

クリティカルシンキング入門

データ×想像が生む信頼の伝え方

week5の難しさは? week4までは「自分の伝えたいことを考え抜く」ことの大切さを学びましたが、week5では大量のデータの中から本当に伝えるべき内容を見極める難しさを実感しました。 どう説得力を作る? また、説得力を高めるためには、次の①~③のサイクルを回すことが重要だと感じました。まず①、伝えたい思いを表現する前に、その背景をさまざまに想像します。次に②、その思いがデータによって裏付けられているかを確認し、さらに③、根拠が不足している場合には追加のデータを集めます。こうした手法により、単に閃きに頼るのではなく、しっかりと時間をかけることで、より良い成果が得られると自信が持てました。 サイクルの意義は? ①~③のサイクルをしっかりと回せば、客観的な調査結果や説得力のある行動が浮かび上がり、未知の領域にも効果的にアプローチできると感じています。 大テーマの捉え方は? また、想像するのが難しい大きなテーマに対しても、この手法は効果を発揮します。たとえば、新たなビジネス展開において、どの分野や顧客をターゲットにするか、どのようなアプローチが有効かを見極める場合などです。 計画への活かし方は? ただし、十分な時間をかける必要がある分、定常業務にそのまま適用するのは難しいと考えています。年度方針や中期計画など、じっくり取り組む必要がある場面で活用するのが最適だと思います。現在、今期の計画に取り組むタイミングであり、この学びをしっかりと活かしたいと感じています。

データ・アナリティクス入門

効率UP!ロジックツリーで問題解決

ロジックツリーの応用法は? what.where.why, howでロジックツリーを組み立てて考える方法が非常に参考になりました。これまでは、問題を発見するとすぐに分析を始めてしまっていましたが、一度全体像を分解してから分析を始めることで、より効率的に進められるように感じました。 MECEを意識する重要性とは? また、MECE(漏れなく、重複なく)を意識して考えることも重要だと学びました。特に構造化が難しい問題の場合、とにかく思いつく選択肢を挙げることが多かったですが、今後はできるだけ全ての要素をもれなく考えることを心がけたいです。そのために、さまざまなフレームワークに触れて、自分の切り口をさらに磨きたいと考えています。 コンテンツ企画での分析法は? コンテンツ企画を立案する際、プラットフォームで評価される要素を構造化した後、企画や編集、テキストといった項目ごとに詳しく分解し、それぞれの要素における理想の姿と現状のギャップを分析することが必要だと感じました。これにより、原因の分析がより深く進められると考えています。また、コンテンツの反応を良くするために、各要素ごとにブレインストーミングを行いたいと思います。 理想のコンテンツをどう定義する? まず、自分が関わる領域のコンテンツ要素を構造化し、分解することから始めたいです。その後、それぞれの要素において理想のコンテンツを定義づけし、コンテンツ制作チームと協力しながら、各要素をどのように改善するかについて議論を進めたいと考えています。

マーケティング入門

イノベーション成功の鍵:顧客視点の大切さ

イノベーション普及に必要な要素とは? 新商品が普及するためには、イノベーションの普及要件が欠かせないと感じました。具体的には【比較優位】(従来のアイデアや技術に比べた優位性)、【適合性】(生活に大きな変化を強いると採用が難しい)、【わかりやすさ】(使い手にとっての易しさ)、【試用可能性】(実験的な使用が可能)、そして【可視性】(周囲から新しいアイデアや技術の採用が観察できる)といった要素が重要です。これらの要素を理解し、考慮することが必要ですが、何よりも顧客の立場に立って考えることが重要だと痛感しました。 顧客イメージの重要性 さらに、顧客が持つイメージの重要性についても深く理解しました。現在、自社や自部署が行っているバックオフィス業務の効率化を考えた際に、店舗や他の部署へ仕組みの変更を依頼する場面があったのですが、これは今週学んだことを活用する良い機会だと考えました。特に、「適合性」と「わかりやすさ」の視点を忘れがちであることを自覚しました。新商品を成功させるだけではなく、顧客の視点に立ってこうした要素がしっかりと実現されているかを考え、業務設計を行いたいと思います。 仕組み変更時にどう対応する? 具体的に店舗に仕組みの変更を依頼する場合には、相手の立場に立って考え、行動することが重要です。その変更が本当に双方にとってプラスとなっているのか、また、相手が外部の企業であった場合、自社のサービスに対して支払いをしたいと思ってもらえるのかといった視点を持って判断していくべきだと感じています。

データ・アナリティクス入門

課題解決のためのアプローチ学びました

どの要素に焦点を当てるべきか? 問題解決のためには、What、Where、Why、Howの各要素に分けて進めるアプローチが重要だと学びました。単に数字を眺めるだけでは見えにくい情報も、プロセスごとに分けて考え、それを定量化 (例えば、ファネル分析やコンバージョン率) することで新たな課題が明らかになります。 仮説立案のコツとは? また、問題の原因を探る際には仮説を立てることが鍵です。その際の思考範囲を広げるために、対となる概念である「対概念」が有効であることも学びました。分析を進める上では、条件を揃えることが重要で、いわゆるApple to AppleとするためにA/Bテストを行い、比較対象の違いを絞り込むことが必要です。原因を探る際には、多くの項目に手を広げず、仮説を絞り込んで十分に研ぎ澄ますことが求められます。 システム導入の目的をどう明確にする? これからシステムを導入するにあたり、まずシステムが何のために必要かを明確にし、その問いを検討段階から関係各所と共有しながら進めることが大切です。そして、現状における問題の特定を行い、What、Where、Why、Howの各要素に分けて進めていきます。 比較分析のためには? システムの導入においては、何を比較するのかを明確にし、例えば導入した場合と導入しなかった場合の比較や、複数社での比較を行います。また、現状とあるべき姿のギャップを定量的・定性的に描き出し、比較することが重要です。場合によっては仮説を立てて進めることも効果的です。

戦略思考入門

差別化戦略で未来を切り拓く方法

市場環境はどう見る? 差別化戦略を進める際には、いくつかの重要な点を念頭に置く必要があります。まず、見落としや抜け漏れを防ぐためにフレームワークを活用し、市場環境を正確に把握することが重要です。また、差別化に際しては、ターゲットとする顧客層を正確に設定する必要があります。顧客の視点に立って考え、競合企業がどこになるのかを判断することも重要です。さらに、施策を持続可能で実施可能なものにするために、実行可能性についても検討する必要があります。 差別化は本当に必要? また、ポーターが提唱する3つの基本戦略を考慮し、本当に自社が差別化戦略をとる必要があるかを判断することも不可欠です。差別化戦略を選択する場合、VRIO分析を活用しながら進行させることが求められます。 後発者はどう戦う? 私の現在の仕事に当てはめると、新たに進出しようとしている市場において、我が社は後発者となります。そのため、市場分析を念入りに行い、ターゲットとなる顧客層を明確化した上で戦略を策定する必要があります。現状のイメージでは、差別化戦略あるいは集中戦略を検討することになると考えられるので、VRIO分析を用いて自社の資源を評価し、意思決定を行っていきたいと考えています。 収益基盤の課題は? 現在は、収益化に向けた基盤構築の段階にあります。しかし、未来を見据えた市場分析を行い、顧客ターゲット層を決定する時期が訪れた際には、フレームワークを活用した分析を根拠として明確に提示できるよう準備を進めておきたいと考えています。

マーケティング入門

顧客体験を豊かにする工夫の重要性

体験価値の再発見 「経験や体験が付加価値となっている商品やサービス」について考えることが増えてきましたが、普段消費者としてさほど意識せずに享受していることが多いです。ただ、確かに同じカフェでコーヒーを飲む場合でも、個人経営の特徴あるカフェとチェーン店とでは、過ごし方が異なる体験につながっています。経験や体験のバリエーションが豊富であることに、改めて気づかされました。 顧客体験をどう工夫する? それと同時に、顧客が自社製品と接する時間が長くなると、どうしても悪い点も見えやすくなるため、飽きさせない体験を常に提供していく工夫が必要だと学びました。 価格と付加価値の戦略 また、原価などの高騰で値上げをせざるを得ない場合でも、「どの企業にも必ずオンリーワンになれる」という基礎動画の講師の言葉がとても前向きで、背中を押してもらえるように感じました。自社でも値上げを行うケースがありますが、その際にどのような付加価値を提供するかを考えることが重要です。 顧客の声をどう活かす? 顧客がどのような体験をするかを常に考慮し、その体験における顧客の感情や思考を想像する必要があります。そして、アンケート等でそれをヒアリングしていくことが必要です。BtoBtoCの自社においては、最終的にサービスを享受するCが抱いた感情や思いを収集し、それを販売先であるBに還元していくことが重要です。これまで長年行ってきたため、顧客が飽きることを意識していない場合がありますが、付加価値の更新をすることが必要だと思います。

データ・アナリティクス入門

ロジックツリーで紡ぐ成長の軌跡

原因特定で悩む? 問題解決のためには、「WHAT」「WHERE」「WHY」「HOW」の4つのステップで整理すると良いと感じました。私は特に「WHERE」の段階、つまり「原因の特定」に偏りがあったように感じますが、今後は「状況把握」や「解決策」に関しても仮説を立て、ロジックツリーを使って可視化するようにしたいと思います。一度有効だと考えた仮説に固執せず、全体を整理し直す柔軟な姿勢を大切にしていきたいです。 人事課題に挑む? 人事課題では、正解がない問題が多く、一般論や他社の傾向と自社の実情が必ずしも一致しない場合があります。そんな中で自分が立てた仮説やその結論を明確にするため、ロジックツリーを作成しながら取り組んでいくことが重要だと感じました。また、これまで属性ごとに人事データを層別分解してきたものの、変数ごとの解釈が不足していたため、状況に応じてさまざまな角度から仮説の検証を行えるように努めたいと思います。 本当の問題は? まずは、目の前のデータに頼るのではなく、何が本当の問題なのかを明確にするための仮説を立て、その仮説をロジックツリーのような形で整理していきます。現状のデータだけでなく、どんなデータがあればより適切な比較ができるかを考え、必要であればデータを収集できる体制を整えることにも注力していきたいです。 検証の進め方は? 最後に、実際にデータを使って仮説を検証する際には、ログを残すことや、時間や状況の違いを比較することを意識しながら、着実に分析を進めていく所存です。

戦略思考入門

見える化で挑むコスト改革

学びで何が変わった? 今週は、規模の経済性、習熟効果、範囲の経済性について学びました。これらはコスト削減に役立つという認識は以前からありましたが、具体的に言葉にして整理されることで、より実感できるようになりました。また、効果が見られない場合もあるという説明を受け、自分自身がその点に気づいていなかったことを再認識しました。 ネット効果をどう見る? また、過去にゲーム業界、現在はIT業界にいるため、ネットワーク経済性に関しては日常的に意識する場面が多いですが、今回の学びにより、普段はあまり意識していなかった部分も含めて、再確認することができました。 固定費削減の秘訣は? 私の所属する会社はデータ分析をビジネスの柱としており、これまで競合が比較的少なく、専門職であったため高コストでも許容されていました。しかし、最近ではLLMやAIエージェントの登場で、専門職に限定されない業務も増えているため、差別化戦略を検討する一方で、コスト削減が重要な課題となっています。いかに固定費を下げ、売上や利益を向上させるかが喫緊のテーマとなっており、今回の学びは具体的な施策を検討する際の重要な軸として活用していこうと考えています。 可視化で議論進む? 今後は、各施策にフレームワークを適用して抜け漏れがないか、また見落としているメリットやデメリットがないかを整理し、可視化していく予定です。上司とのディスカッションは口頭で進むことが多いため、こうした可視化を通じて議論をより明確に進めていきたいと思います。

「場合」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right