データ・アナリティクス入門

ロジックツリーで解明する挑戦

問題解決の第一歩は? 問題解決のプロセスは、「問題の明確化、問題の特定、分析、立案」の4つのステップで進めることが基本です。まず、あるべき姿と現状とのギャップを整理し、定量的な指標で表現することで、問題の本質を明らかにします。 ロジックツリーの意味は? 次に、ロジックツリーを用いて問題を層別分解と変数分解の視点から特定します。この手法は、抜け漏れなく全体を捉えるために有効であり、MECEの考え方を取り入れることで、効率的な分析が可能になります。 データ分析の見直しは? 実際の業務では、ある営業活動の最適化に向けた分析で、手元のデータをもとに検証を試みたものの、結論に至る前に、まずロジックツリーによる要素の分解と、分析の切り口についての再検討が必要だと感じました。また、参加しているプロジェクト全体のパフォーマンス改善にも、この手法を活用できると考えております。 改善策の判断は? ただし、分析においては良い切り口と悪い切り口の判断が難しいという現実も感じました。今後は、これらの手法を実践しながら、より効果的な分析の切り口を見極め、改善策を立案していくことが重要だと実感しています。

データ・アナリティクス入門

仮説を飛び出せ!実践が拓く未来

学びの流れは? 実践演習を通して、What→Where→Why→Howの流れを学べた点が非常に印象的でした。実際の感想文を読むと、学んだ内容が具体的にどのように役立つかが実感でき、理解が深まったと感じました。 仮説と現実のギャップは? また、仮説の正しさに固執せず、世の中の結果を生み出す要因が複数絡んでいるという現実に納得しました。仮説を立てた段階で行動に移すことの重要性を強く感じ、その姿勢が実務でも大切だと理解できました。 複雑な要因は何故? さらに、複雑な要素が絡み合う中でWhyが必ずしも一つではないという点にも気付かされました。MECEに分類しながら仮説を立て、個々の要因を一つずつ検証していくプロセスは、仕事に応用するには手間がかかると感じました。しかし、説得力を持たせるためには、従来の仮説以外の理由を排除する作業が重要であることも学びました。 実務にどう生かす? この経験からは、仮説以外の可能性をいかに排除していくかという点が、MECE思考の力に直結していると感じました。本から得たフレームワークを活用し、実際の業務で実践することで、さらに思考力を高めていけると確信しています。

データ・アナリティクス入門

多角的な視点で挑む数字の謎解き

なぜ一案に固執しない? まず、今回最も学んだのは、あらゆる可能性を考慮し、単一の仮説に固執しない分析の大切さです。たとえ一つの数字が上下したとしても、その変動の要因を丹念に探ることが、次の一手を効果的に打つためには必要不可欠であると感じました。 どうして検証が偏った? 業務上、多くの数字を扱う中で、変化の原因を憶測だけで判断してしまっていたことに気づきました。実際、決め打ちした仮説に基づく検証に偏り、他の可能性を最初から除外していたため、十分な検証ができない場合がありました。今後は、ある要因が数字の変動に影響していると考えた際に、同じ要因が別の状況でも現れているかどうかを比較し、分析の基本である比較の原則に立ち返って検証していきたいと考えます。 なぜ多角的に議論する? さらに、仮説を立てた後すぐにデータ分析に入るのではなく、他に考えられる仮説や視点がないかあらゆる角度から検討することが重要だと再認識しました。特に、一人では気づかない視点も存在するはずなので、複数人でデータを見比べる必要性を感じています。そのため、早速4月からは、より多角的に意見を交わせる組織体制に変更できるよう動いています。

クリティカルシンキング入門

論理とデータで切り拓く変革

本当に原因を掴めた? クリティカルシンキングの動画を通して、問題が起こった際に分析せず「なんとなく」原因を特定し、「とりあえず」の解決策に飛びつくことが非効率であり生産性を下げるという点を再確認しました。 思考の見直しは? 自分の思考偏りや思い込みに気付くとともに、WHAT、WHERE、WHY、HOWといった観点から要素を分解し、数値などの客観的データに基づいて対応策を検討する必要があると実感しています。 前例に縛られている? また、学校内のさまざまな業務では「前例踏襲」や「経験則」に頼る場面が多いと感じています。そこで、問題解決のためには客観的データに基づき、論理的かつクリティカルに考える文化を醸成することが、今の時代にふさわしく、生徒も教員も共に多く学べる環境作りにつながると考えています。 実践はどう進める? 学んだ知識を実践に移すことが重要です。特に、これまであまり取り組んできなかったデータをグラフで示す方法にも積極的にチャレンジしていきたいと思います。 ツールの使い方は? さらに、ロジックツリーを日常の思考訓練のツールとして活用していくつもりです。

リーダーシップ・キャリアビジョン入門

短時間で論理的思考を磨く実践講義

ロールプレイで得た気づきは? ライブ講義でロールプレイを実施した際、私はオブザーバーとして参加しました。自身の日常の行動を振り返りながら聞くことで、良かったことや今後の課題に気づきを得ることができました。短時間で行うロールプレイは難しい部分もありますが、その反面、論理的思考を磨き、短時間で整理して要点を話し合う力をも養わなければならないと感じました。今後さらに論理的思考を学んでいきたいです。 アウトプット方法をどう改善する? 学んだ内容を整理し、メンバーである課長にもアウトプットすることで、自身の理解を深めたいと思います。特に具体的な行動や数字、根拠を示す部分が弱かったと感じています。根拠や目標、ゴールを明確に示し、上司や他の組織を動かすための手法についても、日々の報告で活用していきます。 日々の業務改善はどうする? 自身に余裕が持てるように、日々の業務の棚卸しを行い、その上で学びを活かせるようにしていきます。余裕がなくてメンバーに任せることがないように気をつけ、丁寧な会話を心掛け、すれ違いが起こらないよう留意します。日々の1on1や今後の評価面談の際には、学びの内容を思い出すようにします。

データ・アナリティクス入門

見方ひとつで変わるデータの魅力

定量と定性はどう違う? 曖昧な依頼は何が問題? 定量データと定性データは、普段何気なく扱うものですが、実際には全く異なる情報だと実感しました。データ分析を進める際、曖昧な依頼で「とりあえずざっくりで」と指示してしまうことがよくあります。しかし、授業を通じて、何を知りたいのか、何を明確にする必要があるのかをあらかじめ仮説として立て、分析を進める重要性を再認識しました。 顧客情報はどう読む? 市場の声を捉えている? また、日常的に目にする商品開発や研究での顧客情報、市場ニーズといったデータも、単に眺めるだけでは業務に活かしきれていません。これからは、得られた情報から今後の方針を明確にし、必要な開発や提案に結びつける取り組みを進めていきたいと考えています。 グラフ化は何を示す? 話し合いはどんな効果? 普段の情報をただ見るのではなく、グラフ化するなどして多角的にデータを俯瞰し、チームメンバーとのディスカッションの機会を設けることが必要だと感じました。データ分析の楽しさや、他者へ説明し理解してもらえることで生まれる信頼関係も、業務を円滑に進めるための大切な要素だと実感しています。

クリティカルシンキング入門

自分変革のヒントがここに

なぜアウトプットが大切? クリティカルシンキング講座を通じて、学んだ知識や将来のありたい姿について整理する機会を得ました。その結果、自分に不足している点や今後習得すべきスキルについて明確な指針が見えてきました。また、インプットだけの知識よりも、アウトプットを意識した知識の方がはるかに習熟度が高いことを、この六週間で実感しました。 変化の波にどう乗る? 私の業務はソフトウェア開発であり、変化の激しい現代において特にその業界は急速に変わっています。生成AIの登場に伴い、ソフトウェアエンジニアの働き方も大きく変化している現状にあって、常に消費者のニーズを満たす製品を生み出すためには、クリティカルシンキングが大きな基盤となると感じています。 意見はどう伝える? また、MTGでのディスカッションでは、認識のずれや歪みが生じうることを意識し、経験豊富な上司やメンバーの意見をただ受け入れるのではなく、自分の意見も積極的に伝えることを心がけています。さらに、ソフトウェアの機能開発においては、ユーザーが本当に求めているものは何かを常に考えながら、ユーザーの期待に応える製品作りに取り組んでいます。

データ・アナリティクス入門

分解で掴む業務改善のヒント

どこにボトルネック? 問題の原因を明らかにするには、業務プロセスを分解して、どの段階にボトルネックがあるかを特定することが重要だと学びました。実務ではインターネットを活用した営業を行っていないため、A/Bテストは実施しませんが、同一期間・同一条件下で検証項目を比較するという手法は、他の場面でも十分に応用できると感じました。 セグメントはどう見る? 自部門で伸び悩んでいる事業についても、まずは問題の原因究明に取り組み、適切な対応策を検討する必要があると考えています。そのため、部門内で営業セグメントごとに実績を分析し、各セグメントの問題点を洗い出した上で、具体的な対策を立案・実施し、再度分析するというサイクルを構築したいと思います。 対策はどう実施? 具体的には、3月末時点でのセグメント別業績データをもとに、前年度と当年度の成長率を比較します。低迷しているセグメントについては、問題の原因を徹底的に分析し、翌年度に向けた対策をまとめ実行します。その後は、各四半期ごとに進捗を検証し、現状を把握するとともに、必要に応じて追加の対策を講じるという業務改善の仕組みを根付かせることが目標です。

データ・アナリティクス入門

3W1Hで切り拓く未来への一歩

3W1Hってどんな効果? 問題解決のフレームワークとして3W1Hを活用する意義を改めて実感しました。現状を俯瞰的かつ体系的に把握し、目指す姿とのギャップを明確にするため、データ分析が効果的であることを再認識しました。また、ケースによってはwhenやwhoの視点で整理することも有効であり、状況に応じた思考のヒントとして柔軟に活用していきたいと思います。 採用数の壁は何? 中途採用業務においては、毎年計画値を下回る採用数が課題となっています。ターゲット像の整理、委託先への伝達、募集要項の調整や条件の見直しなど、さまざまな対策を講じてきましたが、いずれもスポット的な打ち手に留まっていました。そこで、なぜ計画値に達していないのか、3W1Hの観点に加え、採用数をロジックツリーで分解し、各要素ごとに対策を考えるアプローチが必要だと感じました。 課題解決の手順は? この喫緊の課題に対して、まずは自身のポジションから現状を3W1Hで整理し、採用プロセスおよび構成要素をもれなくダブりなく書き起こす作業に着手しています。その上で、社内の会議にて問題提起を行い、具体的な打ち手をチーム全体で検討していく予定です。

クリティカルシンキング入門

振り返り文で語る成長の秘訣

日本語を正しく使う重要性とは? 「日本語を正しく使う」ことは、私が常に心掛けているテーマです。後輩指導でも語彙力と読解力を伸ばすことを強調しています。文章を書くときには、順序立てて記載することが重要であり、ピラミッド構造など様々な手法があると考えています。普段からそれを実践していますが、相手によって伝わる内容には違いが出るため、これは難しい課題です。しかし、10人中8割の人に伝わるように心掛け、主語と述語を意識して、学んだことを基に成果を出していきたいと思っています。 ドキュメントにどのように反映する? 文章を文字起こしするドキュメントには多くの種類があり、さらにAIによる情報の簡略化が進む中で、人間らしい言葉遣いを意識しています。また、相手が誰であるか、どのような情報が必要かを考慮しながら、ドキュメントに洗練された形で反映させていきたいと考えています。 目先の計画書作成の工夫は? まずは目先の計画書などに意識を反映させ、他者の意見を取り入れながら改善を図ります。その過程で、自分が知らない業務の部分について意見が集中しないように、章立てや論理構造に工夫を凝らして作成していきたいと思います。

マーケティング入門

ターゲティング6R手法で新市場を狙え!

セグメンテーションとターゲティングの重要性 セグメンテーションの切り口変数とターゲティングの6R手法を学びました。ターゲティングにおいては、市場規模や成長性、競合状況を考慮することが特に重要です。また、ポジショニングの軸を決める際も、自社製品の特徴に基づいて新たな顧客ニーズ層を時代に合わせた形で開発していく必要があります。そのため、ポイントや表現を柔軟に変化させることを学びました。 ポジショニング軸設定の課題とは? ポジショニングの軸を決める最初のステップとして「自社製品の特徴を洗い出す」ことがありますが、現時点では製品が明確に定まっていないため、ターゲティングの実行が難しい状況です。他の子会社との効率的な協力も行っているため、そこが商品のヒントになると考えています。同様の業界状況を持つ子会社の調査を通じ、新たに外部収益に貢献できる商品開発を行う必要があります。 顧客ニーズを捉える方法は? 現状では子会社からの依頼を受けて業務を行っていますが、顧客ニーズを明確に捉えていないまま進めています。今後は、顧客ニーズを意識しながら業務を進行させ、新たなビジネスチャンスに繋げていくことを目指します。

クリティカルシンキング入門

データ分析の新たな視点を発見!

データの見方はどうなる? データの視点やグラフの表示形式が異なるだけで、見方が大きく変わることを実感しました。データ分析を行う際、まず仮説を立て、その仮説に基づいて情報を得るための切り口を考えたいと思います。逆に、他者が行ったデータ分析の結果を見るときは、その結果やグラフをそのまま信じるのではなく、見落としていることがないかを注意深く確認することを心掛けたいです。 顧客アンケートはどう見る? 業務で顧客アンケートを分析する機会が多いため、分析時に複数の観点から試してみたいです。また、サービス改善を設計するときにも、データを根拠にした設計ができるように役立てたいです。特に定性的データ、つまり自由記述のデータをどのように分析していけばよいのか、これからさらに学んでいこうと思います。 定性と定量の使い分けは? アンケート分析に関しては、事業部での週次ミーティングで報告することが多いため、その際には複数の観点からの分析結果を提示できるようにしたいです。また、定性的データの解釈に関しては、単独で分析するのではなく、定量的データと組み合わせて客観的に分析できるように努めたいと考えています。

「業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right