データ・アナリティクス入門

仮説の種が戦略を育てる

仮説の捉え方はどう? 仮説を立てる際、時間軸と結論の視点で捉えるのか、あるいは問題解決のための手段として捉えるのか、細かく分解できることに気づきました。漠然としていた仮説も、目的と必要な手段を明確にすることで、より効果的かつ実践的なものに仕上げることができると学びました。 本当に必要な策は? 売上向上を目指す中で、「何が必要か?」という曖昧な問いだけでは、的確な戦略が立てられないという経験があります。そのため、問いを細分化し、一つ一つの要素に対して仮説を立て検証することが重要だと実感しています。 現状分析の手法は? 具体的には、まず自部署の業務範囲における現状の顧客アプローチ方法を洗い出し、効果があるものとそうでないものをデータに基づいて検証します。その上で、検証結果を踏まえて問題解決のための仮説を構築し、ボトルネックとなっている部分の改善策を検討していく手法を実践しています。

アカウンティング入門

PLで読み解く!取引先の経営戦略

PLの仕組みで利益はどう見える? PLの仕組みを通じて、会社がどの程度利益を上げているのか、何にお金が使われているのかを理解することができました。また、顧客に対してどのような価値を提供するのか、そのコンセプトをしっかり定めることで、経営方針がぶれることなく進められることを理解できました。 取引先の経営状況をどう分析する? 現状の仕事において、取引先の経営状況を把握し、分析する作業でこれを活用したいと思います。その分析業務を通じて、その会社がPL上でどのような意思を持って活動しているのか、提供する価値が何なのかを把握できるようになりたいです。 取引先のPL分析を始めるには? まずは、取引先のPLを分析することから始めたいと思います。その上で、客先を訪問し、彼らが提供しようとしている価値をどのように考えているのかを確認し、自分の理解と客先の意図をきちんと繋げていくことを目指します。

データ・アナリティクス入門

挑戦と成長!ロジック思考の軌跡

アプローチはどう? 問題解決のアプローチとして、「what、where、how、why」を意識することが非常に印象に残りました。同時に、分析において要素を漏れなく、ダブりなく分けるmeceの考え方にも大変共感しています。 要因分析は? 担当している障害分析の業務では、要因分析でmeceを意識して分割することが重要だと感じています。しかし、実際の作業では、完全にmeceを実現するのは難しく、ロジックツリーを併用しながら進めていく必要があると考えています。 ギャップはどう? そのため、まずはあるべき姿とのギャップに着目し、meceを意識しながら自ら手を動かしてロジックツリーを作成することに取り組もうと思っています。経験を積むことで、ロジックツリーの精度も次第に向上していくはずです。 協力はどう? もちろん、作業の途中では他のメンバーの知見を取り入れることも重要だと考えています。

データ・アナリティクス入門

分析の裏側が開く未来への扉

なぜ生存者バイアスが起こるの? 思い返すと、分析に取り組む際に生存者バイアスの影響を受けていることがあったと感じています。既存の情報に頼るだけではなく、分析の目的や対象をしっかり整理することが、正確な分析と信頼できる情報提供につながると実感しました。 データの見方はどう? 現在の業務では、既存のデータをまとめて数字や報告資料にすることが主ですが、そのデータから得られる考察や予測も盛り込みたいと考えています。さらに、現状のデータだけに頼らず、より良い分析のために不足している情報や、精度を高めるためのデータ収集方法についても検討する必要があると思っています。 どう全体を俯瞰する? また、前月の稼働状況を報告する際、これまで前月と先々月の比較に終始していましたが、今後は全体を俯瞰する視点と詳細に注目する視点の両方を取り入れ、将来の予測や考察も盛り込んだ報告ができればと考えています。

戦略思考入門

学びから戦略への第一歩

フレームワークは何? 3C、SWOT、バリューチェーンなどのフレームワークを学ぶ中で、外部・内部分析の基礎を理解することができました。具体例も交えられており、とても分かりやすかったです。今後は、さらに多くのフレームワークの知識も広げていきたいと考えています。 業務改善のヒントは? 一方、学んだフレームワークをすぐに自分の業務に適用してみたものの、分析の粒度が粗く、経営の成功に直結する具体的な施策を打ち出すのは難しいと感じました。専門家同士が集まり、内部・外部の分析を行うことで、より高度な施策の立案が可能になるのではないかと思います。 戦略再考はどう? 今後は、フレームワークの基礎を踏まえた上で、自社の経営戦略の資料を再度確認し、戦略検討のプロセスや考え方を自分なりに学び直していきたいと考えています。まとまった時間が確保できる長期休暇などを活用し、じっくりと身に付けていくつもりです。

データ・アナリティクス入門

データのバイアスに立ち向かう新視点

生存者バイアスのリスクとは? 「生存者バイアス」は、分析を主とする仕事に携わる人でも陥りやすい問題であると実感しました。データの扱い方だけでなく、分析対象の選び方についてもバイアスにとらわれず、ニュートラルに進めることが、自分の課題だと気付くことができました。 目的を明確にする重要性 BPOとして業務に携わっていると、データの使用目的が特に重要である場面が増えると感じています。以前の「マーケティング」という大義のもとでは、目的から外れることは少なかったのですが、目的を明確にすることが、業務全体でますます重要となりそうです。 データの純粋な観察方法 今回の講義を通して、データを純粋に観察する習慣を付け、仮説を立てることを重視し、比較対象が正しいかの確認を怠らないようにしたいと考えています。業務でバイアスの怖さを感じているため、事前の確認によって、バイアスの回避を心掛けたいと思います。

クリティカルシンキング入門

文を整理する力で効率UP!

文構造はどう伝える? 相手に伝わる文章を作成する際には、共通認識で正しい文構造を使用することが重要であると改めて理解しました。伝えたいことや目的、理由、根拠などをどのように要素分けするかは難しいと感じます。そのため、必要な要素を盛り込みつつ、粒度のばらつきをなくすために日々訓練を続けたいと考えています。 メールの使い方はどう? 日常の業務では、メールの使用が多く、チーム内だけでなく、支社や他チームへの報告や依頼も行っています。また、業務改善の企画や複数のメンバーとともに行うタスクもあり、コミュニケーションを通じて情報を正確に伝えることが求められます。 伝達方法はどう確認する? そのため、メールでは文構造や伝える内容をピラミッドストラクチャーで抽象化する練習を続けます。また、一人で完結させず、必要に応じて相手と会話をし、伝えたいこととの乖離がないか確認することも心掛けたいと思います。

クリティカルシンキング入門

整理で広がる思考の扉

ロジックツリーの効果は? 自身や他者が持つ思考のクセや偏りを踏まえ、ロジックツリーを活用することで、偏りの影響を受けずに考える訓練ができるという点が印象に残りました。思考のトレーニングを継続することで、より客観的に考える力を養いたいと考えています。 取引先対応のポイントは? また、取引先との取り組みを整理し、どこから手を付けるかを明確にするためにもロジックツリーの利用が役立つと感じています。情報を整理し全体を俯瞰することで、抜け漏れや偏りを防ぎながら業務を進めることができると考えています。 実行計画のコツは? 具体的な進め方は、まず取り組み内容をリスト化して重要なポイントを確認し、ロジックツリーを作成してテーマごとに情報やその関係性を可視化します。その後、重要度や影響度に応じて優先順位を決め、計画を実行しながら進捗をチェックし、必要に応じて柔軟に調整していくという手順です。

データ・アナリティクス入門

データが照らす改善の道

ABテストの意義は? ABテストを通じて、単にAかBを選ぶのではなく、前提条件を統一した上で比較・検証することが次の施策につながると感じました。問題のある箇所については、プロセスごとに分解し整理することが大切だと改めて認識しました。 数字で何が分かる? また、具体的な数字を取得することで、試行した打ち手がどのような効果をもたらすかを明確にしたいと思います。サイトに限らず、アンケートなどを活用して課題を抽出し、想定される項目のほかに自由記述も設けることで、定量データとして予想外の回答が得られるかどうかを確認できる工夫が必要です。 FAQ改善の狙いは? 業務面では、FAQサイトの問題箇所を特定し、改善案に基づいた比較テストを実施することが重要です。過去のPV数などのデータを把握し、変更後の数値の変化を確認することで、PDCAサイクルを効果的に回していきたいと考えています。

データ・アナリティクス入門

不安から自信へ変わる実践法

比較と伝え方は? データ分析においては、常に比較する姿勢を忘れず、大切なポイントだと実感しています。また、ビジュアル化する際には、これまで自身が慣れ親しんできたグラフだけでなく、伝えたい情報に最も適した表現方法を選ぶことを意識しています。 経験はどう活かす? 業務での分析経験があるため、実際の活用イメージは湧きやすいです。これまでは自己流で学んでいたため、考え方や手法に不安を感じることもありましたが、体系的に学ぶことで自信を持って活用できるようになりました。 仮説と検証は? 具体的には、まず仮説を立て、その後、比較対象を検討してバイアスを排除しつつデータを見るよう努めています。また、分析結果に関しては、担当者間でできる限り議論を重ね、さまざまな視点から検証することを心がけています。さらに、ビジュアル化の際は、誰が見ても正しく、わかりやすく伝えることを意識しています。

クリティカルシンキング入門

データ分析で未来を変える!

学びの意義は? 私の学びについてお伝えします。 数値の発見は何故? 数値データの詳細な分析は重要だと感じました。データの分類手法により異なる結果が得られることを理解しました。また、全体を定義し、仮説を立てることの必要性も痛感しました。具体的には、フレームワークとしてMECEを利用することです。 医療解析の視点は? 医療技術関連に関しては、まず数値化可能なデータを取得し、求めたい結果を明確にしてデータ全体を定義しました。その後、仮説を立て、MECEを活用して分析を進めました。関連性がありそうな分野として、曜日別の忙しさや業務分析にこの手法が使えそうなので試す予定です。 未来の計画はどう? 来週には、自分に関連する業務について計画を立て、その後、今回学んだ手法を活用して曜日別・年齢別の業務分析を行います。その分析結果を振り返り、上司や他の受講生とも共有したいと思っています。

クリティカルシンキング入門

MECEで解決!分解のススメ

分解で何が見える? 分解によって状況の解像度が上がることを学びました。データの加工や分け方の工夫、分解時の注意点を押さえることで、問題点の把握が可能になると思いました。特に、MECEを前提に「モレなく、ダブりなく」を意識しながら切り口を考えることで、問題をより具体化できると感じました。 業務でどう活かす? 自分の業務では、プロジェクトの会議や提案資料の作成において、この分解の基礎を活用しています。MECEを意識し、「モレなく、ダブりなく」という観点を持ちながら、最も適切な切り口を考え、全体を定義することで、状況の解像度を向上させたいと思います。 実践はどこから始まる? まずは実践として手を動かし、分解に挑戦したいです。MECEの「モレなく、ダブりなく」を意識し、層別、変数、プロセスのどれが最適かを考えることで、抽象化されていた問題点を具体化し、解像度を高めていきたいと思います。

「業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right