クリティカルシンキング入門

言いたいことは柱にあり

文章の柱は? 私の日本語表現において、一文が長くなりがちなことや、言いたい主軸が定まっていなかったため、結果的に文字数が多くなってしまった点に気づきました。この経験から、文章を書く際には、明確な「柱」を立てることの重要性を再認識しました。 会議の見える化は? リモート会議では、相手の顔や反応が見えないため、会話が空中戦のようになってしまいがちです。そのため、打ち合わせの際に会話の内容をロジックツリーを意識して整理し、内容の見える化に努めています。こうすることで、会議で伝えたかったポイントが明確に把握できるようになりました。 指示の伝え方は? さらに、部下に対する指示事項を伝える際にも、指示を実施する理由、効果、経緯など、「柱」を意識して説明するようにしています。自分なりにツールをテンプレート化することで、指示が明確に伝わる工夫を行い、また、部下からのフィードバックを受ける際にも業務全体を意識して確認しています。

戦略思考入門

「やめる勇気が業務を進化させる」

業務見直しの必要は? 現在の業務を冷静に見直すことで、戦略的にやめることや捨てることの必要性を学びました。何かをやめる際にはデメリット、特に顧客からの反発を懸念しがちです。しかし、様々な角度からメリットとデメリットを分析し、総合的に判断することが重要であると感じました。 顧客サービスの見直しは? 自分の業務や自組織の業務において、今回学んだ視点から見直すべき業務は多く存在します。特に、売上につながらない対顧客サービスについては、疑問を持たずに当たり前に行ってしまっていることが多いです。そのため、見直してやめる判断ができるのではないかと感じています。 議論の進め方は? まずはやめる候補の業務を洗い出し、それらのメリットとデメリットを冷静に書き出してみたいと思います。その後、書き出した内容を職場のメンバーと共に議論し、抜け漏れがないか、また組織全体で見たときにどう変化するのかを確認していきたいと考えています。

データ・アナリティクス入門

実務で活かす!徹底復習のススメ

なぜ復習が大切? 学んだ内容は、1週間前のものはすぐに思い出せる一方、1か月前のことはすぐに再現できないと実感しました。このことから、インプット、復習、そしてアウトプットの重要性を改めて学び、机上の学習にとどまらず、実務に活かす目的を持って本講座全体を自己復習しようと考えました。 どこから手を付ける? また、データビジネスやロジカルシンキングが未経験のメンバーには、いきなりドメインの詳細な説明をするよりも、入りやすい内容から始めるのが効果的であると感じました。具体的には、比較を用いた分析や、データ分析のプロセス、問題解決のステップなどが、そのヒントになり得ると考えています。4月以降の職務管掌は未定ながら、少なからず人材育成に関わる予定です。そのため、まずは本講座全体を自身で復習し、業務に必要な知見をピックアップしておくとともに、必要に応じてアウトプットすることで、自らの復習と組織全体の底上げを図りたいと思います。

データ・アナリティクス入門

ギャップを超える成長日記

無意識の決めつけは? 現在担当している業務では、欲しい回答を得るために無意識に決めつけをして分析や結果報告をしている可能性があると感じました。今後は、「モレなくダブリなく」の原則に基づいて、再度見直しを実施していきたいと考えています。また、問題解決は単にマイナス面を改善する対策だけでなく、あるべき姿とのギャップを明確にして、そのギャップを数値で示しながら埋めることが重要であると改めて実感しました。新サービスの社内展開においても、従来のアプローチでは行き詰まりを感じていたため、この考え方を取り入れて対応策を検討していこうと思います。 現状とのギャップは? 今後は、社内で提供しているサービスや新たに展開を進めるサービスに対して、まずあるべき姿を明確に定め、現状とのギャップを具体的に示します。その上で、ロジックツリーなどを活用し、問題をモレなくダブリなく分解することで、あるべき姿に向かって着実に対応策を進めていく所存です。

データ・アナリティクス入門

現状把握で切り拓く自分の未来

考えの整理はどう? 総括すると、各工程ごとに自分の考えを丁寧に整理することの重要性を改めて感じました。「いつ」「どの業務が」「なぜ」「どのように」といった観点で整理し、その上で仮説を立て検証することで、具体的な解決策を導き出せると理解しています。 現状把握は何が鍵? まずは、現状を正確に把握することが不可欠です。具体的には、5W1Hの観点から現状を整理し、各工程を定量的に明示することが求められます。また、数字だけでなく現場へのヒアリングを通じ、データと実態に大きなズレがないかを確認していくことが重要です。 仮説検証はどう進む? 重ねて申し上げますが、現状把握を基に仮説を立て、検証するプロセスが鍵となります。仮説を検討する際には、現場担当者の感覚も反映させることで大きなズレが生じないよう確認し、データ整理は目的化せず、解決策検討のための具体的なアプローチとして行動に移す意識を大切にしたいと考えています。

データ・アナリティクス入門

仮説思考で変わるサポートの未来

仮説思考は何が変わる? 仮説思考を学ぶことで、業務に対する課題意識がより明確になったと感じました。単に仕事をこなすのではなく、仮説をもとにトライアンドエラーを重ねることで、目的に一歩ずつ近づけるという実感が得られました。 サポート満足の理由は? 現在の課題として、クライアントのサポートに対する満足度が低い原因は、製品の不具合ではなく、返信までに要するリアクション時間やサポートサイトの分かりにくさにあるとの仮説を立てました。この課題に対して、改善策を検討し実施していく決意です。 フィードバック改善案は? また、クライアントからのサポートフィードバックを年に一度にとどめず、より頻繁に意見をいただけるようにすることで、現状の把握と対応の質を向上させたいと考えています。問い合わせが多い項目については、サポートサイトを見直しアップデートするほか、検索しやすいキーワードの設定も改め、利用しやすい環境の整備を目指します。

データ・アナリティクス入門

小さな気づき、大きな成長への道

ABテストの条件は? ABテストでは、条件を揃えることの重要性を改めて認識しました。web広告の出稿時、期間は統一していたものの、画像やメッセージなどの要素がバラバラになっていた点は反省材料です。5パターンから2パターンに絞ったときに優位差が出なかったことから、最初から2パターンで検証すればよかったと感じました。今後は、各条件をしっかりとそろえることを最優先に、広告出稿に臨みます。 部下の進捗状況は? 初めてプロジェクトマネジメントに取り組む部下が、全体像の把握に苦労している様子が見受けられます。全体スケジュール表を提出させても、個々の業務に追われ、検討した案を1週間放置してしまうケースが発生し、本人も周囲も内容を忘れてしまったため、再び考え直す必要が生じています。この状況がプロジェクト全体の進捗に影響しているため、今後はプロセスの各段階を理解することを重点的に指導し、円滑な進行を目指していきたいと思います。

データ・アナリティクス入門

幾何平均で見える新世界

なぜ異常値が出る? これまで、代表値や単純平均、加重平均は業務で使用してきましたが、幾何平均、中央値、標準偏差は財務業務では使う機会がほとんどありませんでした。特に、売上の成長率を計算する際に、幾何平均を用いなければ異常値が算出されてしまう点には驚きを覚えました。このことについて、なぜそのような結果になるのか、また今後どのように活用できるかを、再度整理する必要があると感じています。 今後の計算はどうする? また、これまで主に財務データを扱ってきたため、幾何平均や中央値、標準偏差の計算・分析を実施する経験がほとんどありませんでした。そこで、まずは顧客の年齢層データを対象に、中央値や標準偏差を計算し、その分析結果を社内で共有する予定です。今後は、財務業務に応用できるデータとして、幾何平均、中央値、標準偏差が有効に活用できる分野を探り、エクセル関数を用いた計算方法についても調査し、実際に計算していきたいと考えています。

クリティカルシンキング入門

ピラミッド構造で極める伝達力

どうして文章が難しい? 「相手に伝える文章を書く」という課題は、非常に骨が折れるものでした。 整理すると何が見える? 伝えたいことを段階的に整理し、結論・根拠・なぜならという要素に分解することで、自分の思考を客観的に整理できる点が非常に魅力的でした。 組み立ての秘訣は? いわゆるビジネス文章は、ただ筆を進めるだけで書かれるものではなく、図やピラミッドストラクチャーを用いて組み立てることで、シンプルで分かりやすい構成が可能になると感じました。 業務にどう応用する? 実際の業務においても、この考え方は大いに役立っています。特に、関係各所への説明責任が求められる状況では、各所の状況や要求事項を整理して発信することが重要です。 今後の展望は? 今後は、ピラミッドストラクチャーの整理方法を日常的に活用し、ビジネスメールの作成においても、結論に対して適切な根拠を示すよう意識していこうと考えています。

リーダーシップ・キャリアビジョン入門

自分らしさで切り拓くリーダーシップ

リーダー型の考え方はどう? 全体を振り返ると、リーダーシップの型(指導型、支援型、参加型、達成志向型)にこだわる必要はないと学びました。これまでは自らのリーダーシップを発揮する際に、指導型から支援型や参加型へと変わることを意識していました。しかし、今後は「どんな仕事か(環境要因)」と「どんな相手か(適合要因)」を見極め、柔軟に対応する中で自分らしさを大切にしていきたいと感じました。 会議で何を振り返る? 毎月初めの会議では、進捗管理だけでなく、業務の振り返りと問いかけを積極的に行っています。また、動機づけを忘れずに実施することで、メンバーの自律性やモチベーションの向上に寄与しています。会議においては、振り返りの割合を高め、具体的な事例をもとに本人の言葉で状況を語ってもらいます。そして、傾聴・共感・尊重の姿勢をもって問いかけることで、個々の気づきを促し、そこから得られる教訓を成長に結びつけるサポートをしています。

クリティカルシンキング入門

データ分析の新しい視点を発見!

目的と仮説の意義は? データ分析を行う際には、目的と仮説をしっかりと持って取り組むことが大切です。そして、分析の結果に対する「それでどうなるのか?」を明確にすることを意識しましょう。MECE(モレなくダブりなく)にグルーピングした後、そのグルーピングを自分でレビューし、精度を高めることも重要です。 自己レビューの限界は? 私は日常的に分析や示唆出しを行っており、適切な粒度でグルーピングをすることの重要性を感じています。しかし、自己レビューには限界があるため、まず自分でレビューをした後に、他者からのレビューを意図的に組み込むことで、多角的な視点を得るようにしています。 レビュー導入の理由は? 分析後には、レビューを求めるプロセスを自身の業務フローに組み込んでいます。他者のレビューを得るために、締切よりも早めの段階でアウトプットを心がけています。この取り組みは、企画を伴うすべての業務に適用しています。

データ・アナリティクス入門

データ分析の価値を広げるために

データ分析の本質とは? Week 1の講義・学習で新たに学んだ点は以下の3点です。①データ分析の本質は「比較」、②データ分析は必ずしも「定量的である」必要はない、③データ分析の前の条件設定が重要。前提条件が揃っていないと正しい分析はできません。 分析結果をどう共有する? 社内データの活用時に、前提条件・分析目的・分析結果から行うアクションを利害関係者に共有することで、共通の目的達成のために議論ができると感じました。データ分析は一方的に行い、結果を発信するものではないということを広く共有し、浸透させたいと考えています。 データ活用を身近にするには? データに関する業務が属人化しており、”データ活用=特定の人の特別な仕事”になっている部分があります。現在扱っているデータは広く社内で活用可能な内容も含むため、よりデータ活用を身近に感じてもらえるような機会(社内セミナー、報告会)を増やす必要があると思います。

「業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right