データ・アナリティクス入門

ロジックツリーで解明する挑戦

問題解決の第一歩は? 問題解決のプロセスは、「問題の明確化、問題の特定、分析、立案」の4つのステップで進めることが基本です。まず、あるべき姿と現状とのギャップを整理し、定量的な指標で表現することで、問題の本質を明らかにします。 ロジックツリーの意味は? 次に、ロジックツリーを用いて問題を層別分解と変数分解の視点から特定します。この手法は、抜け漏れなく全体を捉えるために有効であり、MECEの考え方を取り入れることで、効率的な分析が可能になります。 データ分析の見直しは? 実際の業務では、ある営業活動の最適化に向けた分析で、手元のデータをもとに検証を試みたものの、結論に至る前に、まずロジックツリーによる要素の分解と、分析の切り口についての再検討が必要だと感じました。また、参加しているプロジェクト全体のパフォーマンス改善にも、この手法を活用できると考えております。 改善策の判断は? ただし、分析においては良い切り口と悪い切り口の判断が難しいという現実も感じました。今後は、これらの手法を実践しながら、より効果的な分析の切り口を見極め、改善策を立案していくことが重要だと実感しています。

データ・アナリティクス入門

多角的な視点で挑む数字の謎解き

なぜ一案に固執しない? まず、今回最も学んだのは、あらゆる可能性を考慮し、単一の仮説に固執しない分析の大切さです。たとえ一つの数字が上下したとしても、その変動の要因を丹念に探ることが、次の一手を効果的に打つためには必要不可欠であると感じました。 どうして検証が偏った? 業務上、多くの数字を扱う中で、変化の原因を憶測だけで判断してしまっていたことに気づきました。実際、決め打ちした仮説に基づく検証に偏り、他の可能性を最初から除外していたため、十分な検証ができない場合がありました。今後は、ある要因が数字の変動に影響していると考えた際に、同じ要因が別の状況でも現れているかどうかを比較し、分析の基本である比較の原則に立ち返って検証していきたいと考えます。 なぜ多角的に議論する? さらに、仮説を立てた後すぐにデータ分析に入るのではなく、他に考えられる仮説や視点がないかあらゆる角度から検討することが重要だと再認識しました。特に、一人では気づかない視点も存在するはずなので、複数人でデータを見比べる必要性を感じています。そのため、早速4月からは、より多角的に意見を交わせる組織体制に変更できるよう動いています。

クリティカルシンキング入門

問い続ける実践の発見ストーリー

なぜ即答に飛びつくの? 今回、事前にさまざまな切り口でデータを分解して取り組んでみましたが、実践してみると答えにすぐ飛びついてしまう傾向に気づきました。こうした状況を避けるためにも、出てきた答えや傾向に対して常に「本当にそうなのか?」と問いかけることが重要だと学びました。 MECEで何を感じた? また、MECEの考え方を学び、もれなくダブりなく切り分ける基本的なパターンは把握できたものの、プロセス分解という視点は初めて触れるものであり、新たな発見となりました。 顧客分析はどう進む? 現在、顧客満足度調査を実施しており、まもなく結果が出る状況です。評価と顧客への対応との関係を分析する予定でしたが、今回学んだデータの切り口やMECEの考え方を活かして、層別分解に加えプロセス分解を取り入れた分析を試みたいと思います。 新手法に何を期待する? 来月には顧客満足度調査の結果分析を行う予定で、メンバーが実際に分析に取り組む中で、出てきた答えに対して常に「本当にそうなのか?」と問いかける姿勢を大切にし、層別分解とプロセス分解を組み合わせた新たな手法を提案していきたいと考えています。

クリティカルシンキング入門

伝わる文章はこう作る!基本の秘訣

文章の伝わりは? 日本語の適切な使い方が、文章の伝わりやすさに直結することに気づきました。主語と述語のつながりが保たれているか、途中で主語が変わっていないかというチェックポイントが明確になり、改めて基本を学び直す必要性を感じました。 論理順序は? 手順に沿って文章を書くことはできていたつもりでしたが、主要な論点とそれを支える根拠のつながりが不十分であると実感しました。論理的な順序で文章を構成することが、読者に確実に伝わる文章作りに重要であると感じています。 相手理解は? 新しい組織やメンバーとスタートしたチームで、意図したように伝わらずもどかしい思いをした経験から、共通の前提がない場合でも相手の立場や関心事項をしっかり考え、丁寧な文章で伝えることの必要性を痛感しました。今後は、文章の評価観点を復習して自分自身の中に確実に落とし込んでいきたいと思います。 説得力の構築は? また、「手順を踏んで書く」方法は、営業資料の作成などにも有効だと感じています。柱となる論点を立て、その論点を支える具体的な根拠や具体例をしっかりと繋げる習慣を身につけ、より説得力のある文章を構成するよう努めたいです。

アカウンティング入門

投資も採用も数字で見極める

貸借対照表のポイントは? 貸借対照表(B/S)の基本構造を学び、負債が1年以内の支払いとなる「流動負債」と、1年以上にわたる支払いが見込まれる「固定負債」に分けられることを理解しました。また、店舗のコンセプトである「贅沢感」と「非日常感」を演出するための家具や内装に関して、新品にこだわるのではなくリサイクル品の活用も検討すべきだと気づきました。これまで新品の家具や内装を前提に考えていたため、どこまでが投資となり、どの部分で妥協できるかを見極める必要性を感じています。今後は、掲げた目的と目標を踏まえ、投資に見合った利益をしっかりと検討していきたいと思います。 求人手法の選び方は? また、12月末までに1部署で数名の採用を検討していることから、求人媒体の選定が重要な課題となっています。掲載型、スカウト型、または他のダイレクトリクルーティング方式など、各手法の特徴を比較し、費用面では掲載期間ごとの固定料金制と採用が決定した際に発生する成功報酬型の違いを含め検討する必要があります。過去の採用実績や今後の利益見込みを踏まえ、自社の数字をシミュレーションしながら、最適な採用手法を見つけ出したいと考えています。

クリティカルシンキング入門

問いが輝く!手探りからの発見

初見の印象は? 最初に資料を見たときは、どのように進めればよいか少し迷いました。なんとなく手探りで取り組んでしまった感覚がありましたが、今まであまり経験のなかった他者作成のグラフを評価するプロセスは新鮮でした。資料がわかりやすく整理されているため、自分なりに「こうしたらもっと良くなるのではないか」という意見が湧き上がったことが印象的でした。 何が共感を呼ぶ? 資料を読み進めるうちに、自分の考えと照らし合わせて「自分が考えたことと一致している部分」や「ここは違うのでは」という疑問が次々と浮かび、設問に対して主体的に取り組むことができました。問いかけから議論を始める流れが、学習を楽しくする大きな要因となりました。 問いで業務改善? また、「問い」から始める、意識し続ける、そして共有するという考え方は、仕事の場面でミスが発生した際に問題点の発見や改善策の策定に役立つと感じました。経営者の視点を持つことは簡単ではありませんが、まずはこの基本的な考え方から実践してみようと思います。今いる部署でも、小さな「問い」を見つけることから着手し、その視点が業務改善に繋がることを期待しています。

アカウンティング入門

資産と負債が教えてくれた経営のヒント

資産と負債はどう考える? B/Sにおける資産(お金の使い方)と負債(お金の集め方)の基本的な考え方が理解できました。資産・負債という言葉は、少しとっつきにくく、理解が難しい印象を受けがちでしたが、「お金を何にどう使うか?」や「お金をどう調達するか?」という風に読み替えると、会社だけでなく個人の日常にも通じる考え方であることがわかり、以前より親しみやすく感じられました。資産は収益確保の源泉となるものとも捉えられるため、この点については今後、自分なりに考察を深めてみたいと思います。また、資産の大きさが経営にどのような影響やパラメーターとなるのかも検討してみる価値があると感じました。 B/S分析の活用は? 現状の業務において、B/S分析をどのように活用できるかという具体的なイメージはつかみにくかったものの、まずは自社のB/Sを確認し、財務状況を把握することから始めたいと考えています。経営者の視点に立つと、負債に対して自社の返済能力(稼ぐ力や本業以外での収益)を踏まえ、資産の売却やさらなる借入による追加投資が可能かどうかを判断する一つの指標となると感じるため、今後の学びに生かしていきたいと思います。

データ・アナリティクス入門

仮説思考を活用したデジタル化挑戦記

仮説思考の基本は? 仮説思考は、ビジネスのスピードと精度を向上させ、説得力を伴った意思決定を行うために重要です。このプロセスを実践するには、まず複数の仮説を立て、網羅性を持たせることが必要です。仮説を立てる際の重要なツールとして、フレームワークを活用することが推奨されます。仮説には、結論の仮説と問題解決の仮説があり、特に問題解決の仮説では、what、where、why、howの順に考えることが基本です。 デジタル化の進め方は? 私の仕事の一環として、保険手続きを紙からデジタルへと移行させる方法を模索していますが、現状では多くの既存データが十分に活用されていないと感じています。そのため、仮説思考を取り入れながら、デジタル化率を向上させるための施策を複数考えたいと思います。 実行策の視点は? まず、手続きの種類ごとにデジタル化率を向上させる余地があるか、既存データを基に複数の網羅的な仮説を立てます(where)。次に、デジタル化が進んでいない理由を明らかにするため、幾つかの原因を挙げます(why)。そして、実現可能性やコストを考慮しながら、具体的な実行策を練ります(how)。

アカウンティング入門

数字が明かす経営の真実

大きな数値の秘密は? P/Lを読み解く際は、まず大きな数字に注目することが基本だと実感しました。売上総利益、営業利益、経常利益、税金等調整前当期純利益、そして当期純利益といった各項目の構造をしっかりと整理することで、全体のビジネスの流れや収益性の全容が見えてきます。 費用内訳はどう考える? また、売上原価率の違いや販管費、一般管理費の内容についても学び、単なる数字の比較ではなく、各費用の内訳から企業がどのようなポリシーでビジネスを展開しているのかを考察する重要性を感じました。特に、業界ごとに異なる費用構成は、それぞれのビジネスモデルの特徴を反映している点に着目することで、より具体的な分析が可能となります。 共通点はどこにある? さらに、同業者や異業種のP/L構造を比較検討し、自社やグループ企業の収益構造とはどのような共通点や相違点があるのかを探ることが、経営戦略の充実につながると実感しました。これに加え、新たなビジネスモデルやそれに伴う技術開発の場合、どのような収益構造が想定されるか、様々な視点から考察するディスカッションは非常に実践的であり、幅広い視野を養う良い機会となりました。

データ・アナリティクス入門

平均値の罠に気づいてデータを活用する方法

平均値の危うさを再認識 今回の学習で、平均値の危うさを改めて知りました。例題を通じて、グラフにすると簡単に理解できる数値もあれば、解釈が難しい数値もあると感じました。代表値と散らばりをうまく活用して、仕事に活かしたいと思います。 正規分布と2SDルールに興味 これまでも様々なグラフを見たことはありましたが、平均値の名称と内容について初めて深く理解できました。特に、正規分布と2SDルールはとても興味深かったです。 標準偏差の応用は可能? 標準偏差の数値でデータの散らばりを明確にすることも応用できそうです。弊社オウンドメディアにおけるコラムのオーガニック流入の記事ごとの順位を、分布グラフを用いて検証してみたいと思いました。それにより、カテゴリーを大分類し、リライトの優先順位を決めるなどの応用が期待できます。 新たな発見を期待して まずは、今回学んだ内容をしっかり復習し、これまで手をつけていなかった集計にも活用してみます。そうすることで、新たな発見や課題が生まれることを期待しています。さらに、TOP10の記事のキーワードリサーチにも、この解析手法を試してみたいと思います。

クリティカルシンキング入門

イシューの特定で効率アップ!会議攻略法

イシューを特定する重要性とは? まず、目的を達成するには「今ここで答えを出すべき問いは何か」というイシューを特定することが重要です。イシューがずれてしまうと、答えにたどり着けません。イシューは方向性を示すものであり、他者と共有することで方向性を合わせることができます。また、議論の途中で忘れられてしまうと逸れてしまうため、常に意識し続けることが大切です。 業務でのイシュー活用法は? 私の業務では、提案の作成や会議の場面でこの考え方が役立つと思います。提案ではイシューを特定することで、課題に対してダイレクトに答える提案が作成できます。会議では、各自が異なる前提を抱えているため、前提合わせに時間がかかることがあります。イシューを明示することで、効率的に会議を進めることができるでしょう。 クリティカルシンキングをどう活かす? 課題に対してダイレクトに答える問いを考える時間を取るようにしたいと思います。イシューを考えるには、クリティカルシンキングの基本姿勢である「目的は何か」を常に意識し、自分の考えを批判的に捉えることが重要です。より良いイシューを考え出せるよう、実践していきたいと思います。

データ・アナリティクス入門

ばらつきで読み解く学びの軌跡

なぜばらつき重視? データ全体を把握する中で、ばらつきに注目する重要性を再認識しました。要因分析を行う際、ばらつきを理解することで特定の傾向や変化の大まかな枠組みを捉えられる可能性があると感じます。普段は個別案件や特定のセグメントに意識が向きがちですが、基本的な統計の観点として必ず押さえておくべきだと思いました。また、ばらつきの程度を数値的にどの差や変化として捉えるのが有効かについても関心を持ちました。 営業データの本質は? 例えば、自社の営業データでは、長期的なトレンドは大きく変わらないという認識があり、特定の年度に限った動きが見られなければ大幅な変化はないという思い込みがありました。基本統計としてのばらつきを正確に把握することとともに、数値の背後にある実務上の変化を探るため、定量データだけでなく定性情報にも着目しようと考えました。 分析軸は見直すべき? さらに、データ分析の軸を改めて設定し、その意味を整理する必要性を改めて感じました。特に、データに見られるばらつきが、営業活動の現状を示す行動や外部要因の影響をどのように反映しているのかを把握することが大切だと実感しました。
AIコーチング導線バナー

「本 × 基本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right