データ・アナリティクス入門

問題解決のプロセスを活かす学び

問題解決のプロセスとは? 問題解決には明確なプロセスがあります。具体的には、What、Where、Why、Howの6つのステップがあり、この順番を守ることが重要です。まずは、なりたい姿と現状のギャップを把握することが分析の第一歩です。そして、解決方法を考える前に、現状で起きている問題の状況や原因を見つけることに時間をかける必要があります。 自分の思考の癖をどう活かす? 私の場合、すぐに解決方法(How)に飛びがちです。しかし、自分の考え方の癖を知ることも問題解決において重要です。オープンデータから社会課題を洗い出すのが現在の業務ですが、仮説に対して問題を絞り込む際にロジックツリーが役立ちます。基本的にはチームで取り組むため、思考のプロセスを視覚化・言語化することで、情報共有を齟齬なく行えるようにしています。 データ分析で何を学びたい? データ分析を体系的に学ぶことで、ロジカルに再現性のあるデータ分析に取り組みたいと思っています。特に、ロジックツリーを作る際には「手書き」を心がけたいと思います。紙に書くことで思考が整理され、重要事項には丸をつけたり矢印を使ったりすることで、優先順位を決めるのに役立ちます。

戦略思考入門

顧客主役の戦略が未来を変える

顧客への気づきは? ビジネスの勝敗は顧客によって決まるという考え方は、私にとって大きな気づきでした。まず「顧客とは誰か」を明確にし、その顧客が本当に求めている価値を深く掘り下げることが重要だと実感しました。そして、その価値を実現する手段として、持続可能であり他社にない独自性を持った戦略が求められると理解しました。 戦略立案で何を学ぶ? 戦略の立案にあたっては、コスト・リーダーシップ、差別化、集中という3つの基本戦略が存在し、これらとVRIO分析を組み合わせることで独自の優位性を構築できる点に納得しました。 営業戦略の狙いは? また、営業戦略を考える際には、ミドルセグメントに属する顧客―従業員数300〜1,000名の企業―のニーズを的確に捉えることが大切です。さらに、競合他社がどのような戦略を採用しているのかを整理し、その情報をもとに自社の大方針を決定するプロセスも重要だと感じました。 経験が示すものは? 実際の営業経験を通じて、顧客の求める価値や市場の動向、競合の戦略状況を把握し、VRIO分析を活用して自社の優位性を明確にすることが、最終的な戦略立案において不可欠であると確信するに至りました。

データ・アナリティクス入門

目的明確!多角的視点で読み解く

分析の目的は何? 分析とは、比較によって本質を浮き彫りにする作業であると再認識しました。分析の目的を明確にし、適切な比較対象を選ぶことが、納得感のある結果を導くための基本であると感じています。また、目的に応じた情報の見せ方が存在するという理解も深まりました。 情報整理の必要性は? ダイバーシティ推進の担当として、社内の属性割合や勤務実態の定量データ、そしてアンケート結果といった定性データを扱う機会が多い中で、まずは情報の用途や目的を明確にすることの重要性を改めて認識しました。必要な情報をより深く掘り下げ、検討していくことが今後の課題です。 多角的視点はどう? また、自分だけの視点に偏らず、他者の意見を取り入れることで、多角的な視点から情報を集約したいと考えています。こうすることで、より客観性の高い分析が可能になると実感しています。 透明な分析方法は? 一方で、分析の目的に応じた仮説設定が、恣意的に都合の良い情報操作につながるのではないかという懸念も感じています。今後の学びを通じて、この疑問に対する気づきを得るとともに、より透明性のある分析手法の習得を目指していきたいと思います。

クリティカルシンキング入門

視覚を武器に!伝わる資料作成術

視覚の工夫は必須? 伝わる文章や資料を作成するためには、まず視覚化が重要だと感じました。グラフの種類や配色、フォント、文字の大きさ、さらにはアイコンの選び方など、ただなんとなく使うのではなく、常に読み手の立場に立って工夫する必要があります。 読み手を意識する? また、読み手のニーズに合わせたリード文や文章構成を意識することで、より魅力的に情報を伝えられると実感しました。実際に、お客様向けのメールマガジンを作成する際、ついつい自分の伝えたいことばかりを書いてしまう癖がありましたが、今回学んだポイントを意識することで、コンバージョンにつながる文章作成に挑戦したいと考えています。 数字はどう活かす? 幹部会議用の資料作成では、数値をただ羅列するだけの資料になりがちでしたが、今後はグラフを有効に活用して、より分かりやすく伝えられる資料作成を目指します。まずは、各ケースに応じた適切なグラフの選択方法や、基本的なグラフ作成スキルを磨くことが課題だと感じています。 学びを活かすには? この学びを通じて、読み手にとって見やすく、理解しやすい資料作成ができるよう努力していきたいと思います。

アカウンティング入門

変化する数字が描く未来

大数字は何を示す? PLを読む際は、まず売上、営業利益、経常利益、当期純利益といった大きな数字に注目し、企業全体の状況を把握することが基本です。その上で、経年比較や業界内・他社との比較を行い、数字の変化や違いから企業の特徴や戦略を読み解く視点が重要だと感じました。 業態の違いは何? また、カフェ業態の異なるコンセプトの事例を学ぶことで、提供価値やビジネスモデルが異なれば収益構造も変わることを実感しました。こうした違いは、PL構造に現れるため、各数字の意味や変動を総合的に捉えることが求められます。 矛盾確認はどうなる? さらに、提供価値とPL構造が矛盾していないかを確認する視点も大切です。例えば、高価格帯を謳うビジネスモデルであるにもかかわらず、値引きで売価を下げていたり、原価高騰の中で品質を落としていたり、売上に対する販管費の割合が不釣り合いである場合は、問題の兆候として受け止める必要があります。 改善の鍵はどこ? 事業構造改革を推進している現状においては、時系列でPL構造の変化を再確認し、数字でその改善が実感できるかどうかを追っていくことが、今後の改善に向けた鍵になると考えています。

データ・アナリティクス入門

ロジックツリーで解明する挑戦

問題解決の第一歩は? 問題解決のプロセスは、「問題の明確化、問題の特定、分析、立案」の4つのステップで進めることが基本です。まず、あるべき姿と現状とのギャップを整理し、定量的な指標で表現することで、問題の本質を明らかにします。 ロジックツリーの意味は? 次に、ロジックツリーを用いて問題を層別分解と変数分解の視点から特定します。この手法は、抜け漏れなく全体を捉えるために有効であり、MECEの考え方を取り入れることで、効率的な分析が可能になります。 データ分析の見直しは? 実際の業務では、ある営業活動の最適化に向けた分析で、手元のデータをもとに検証を試みたものの、結論に至る前に、まずロジックツリーによる要素の分解と、分析の切り口についての再検討が必要だと感じました。また、参加しているプロジェクト全体のパフォーマンス改善にも、この手法を活用できると考えております。 改善策の判断は? ただし、分析においては良い切り口と悪い切り口の判断が難しいという現実も感じました。今後は、これらの手法を実践しながら、より効果的な分析の切り口を見極め、改善策を立案していくことが重要だと実感しています。

データ・アナリティクス入門

多角的な視点で挑む数字の謎解き

なぜ一案に固執しない? まず、今回最も学んだのは、あらゆる可能性を考慮し、単一の仮説に固執しない分析の大切さです。たとえ一つの数字が上下したとしても、その変動の要因を丹念に探ることが、次の一手を効果的に打つためには必要不可欠であると感じました。 どうして検証が偏った? 業務上、多くの数字を扱う中で、変化の原因を憶測だけで判断してしまっていたことに気づきました。実際、決め打ちした仮説に基づく検証に偏り、他の可能性を最初から除外していたため、十分な検証ができない場合がありました。今後は、ある要因が数字の変動に影響していると考えた際に、同じ要因が別の状況でも現れているかどうかを比較し、分析の基本である比較の原則に立ち返って検証していきたいと考えます。 なぜ多角的に議論する? さらに、仮説を立てた後すぐにデータ分析に入るのではなく、他に考えられる仮説や視点がないかあらゆる角度から検討することが重要だと再認識しました。特に、一人では気づかない視点も存在するはずなので、複数人でデータを見比べる必要性を感じています。そのため、早速4月からは、より多角的に意見を交わせる組織体制に変更できるよう動いています。

クリティカルシンキング入門

問い続ける実践の発見ストーリー

なぜ即答に飛びつくの? 今回、事前にさまざまな切り口でデータを分解して取り組んでみましたが、実践してみると答えにすぐ飛びついてしまう傾向に気づきました。こうした状況を避けるためにも、出てきた答えや傾向に対して常に「本当にそうなのか?」と問いかけることが重要だと学びました。 MECEで何を感じた? また、MECEの考え方を学び、もれなくダブりなく切り分ける基本的なパターンは把握できたものの、プロセス分解という視点は初めて触れるものであり、新たな発見となりました。 顧客分析はどう進む? 現在、顧客満足度調査を実施しており、まもなく結果が出る状況です。評価と顧客への対応との関係を分析する予定でしたが、今回学んだデータの切り口やMECEの考え方を活かして、層別分解に加えプロセス分解を取り入れた分析を試みたいと思います。 新手法に何を期待する? 来月には顧客満足度調査の結果分析を行う予定で、メンバーが実際に分析に取り組む中で、出てきた答えに対して常に「本当にそうなのか?」と問いかける姿勢を大切にし、層別分解とプロセス分解を組み合わせた新たな手法を提案していきたいと考えています。

データ・アナリティクス入門

仮説思考を活用したデジタル化挑戦記

仮説思考の基本は? 仮説思考は、ビジネスのスピードと精度を向上させ、説得力を伴った意思決定を行うために重要です。このプロセスを実践するには、まず複数の仮説を立て、網羅性を持たせることが必要です。仮説を立てる際の重要なツールとして、フレームワークを活用することが推奨されます。仮説には、結論の仮説と問題解決の仮説があり、特に問題解決の仮説では、what、where、why、howの順に考えることが基本です。 デジタル化の進め方は? 私の仕事の一環として、保険手続きを紙からデジタルへと移行させる方法を模索していますが、現状では多くの既存データが十分に活用されていないと感じています。そのため、仮説思考を取り入れながら、デジタル化率を向上させるための施策を複数考えたいと思います。 実行策の視点は? まず、手続きの種類ごとにデジタル化率を向上させる余地があるか、既存データを基に複数の網羅的な仮説を立てます(where)。次に、デジタル化が進んでいない理由を明らかにするため、幾つかの原因を挙げます(why)。そして、実現可能性やコストを考慮しながら、具体的な実行策を練ります(how)。

データ・アナリティクス入門

ばらつきで読み解く学びの軌跡

なぜばらつき重視? データ全体を把握する中で、ばらつきに注目する重要性を再認識しました。要因分析を行う際、ばらつきを理解することで特定の傾向や変化の大まかな枠組みを捉えられる可能性があると感じます。普段は個別案件や特定のセグメントに意識が向きがちですが、基本的な統計の観点として必ず押さえておくべきだと思いました。また、ばらつきの程度を数値的にどの差や変化として捉えるのが有効かについても関心を持ちました。 営業データの本質は? 例えば、自社の営業データでは、長期的なトレンドは大きく変わらないという認識があり、特定の年度に限った動きが見られなければ大幅な変化はないという思い込みがありました。基本統計としてのばらつきを正確に把握することとともに、数値の背後にある実務上の変化を探るため、定量データだけでなく定性情報にも着目しようと考えました。 分析軸は見直すべき? さらに、データ分析の軸を改めて設定し、その意味を整理する必要性を改めて感じました。特に、データに見られるばらつきが、営業活動の現状を示す行動や外部要因の影響をどのように反映しているのかを把握することが大切だと実感しました。

アカウンティング入門

数字が明かす経営の真実

大きな数値の秘密は? P/Lを読み解く際は、まず大きな数字に注目することが基本だと実感しました。売上総利益、営業利益、経常利益、税金等調整前当期純利益、そして当期純利益といった各項目の構造をしっかりと整理することで、全体のビジネスの流れや収益性の全容が見えてきます。 費用内訳はどう考える? また、売上原価率の違いや販管費、一般管理費の内容についても学び、単なる数字の比較ではなく、各費用の内訳から企業がどのようなポリシーでビジネスを展開しているのかを考察する重要性を感じました。特に、業界ごとに異なる費用構成は、それぞれのビジネスモデルの特徴を反映している点に着目することで、より具体的な分析が可能となります。 共通点はどこにある? さらに、同業者や異業種のP/L構造を比較検討し、自社やグループ企業の収益構造とはどのような共通点や相違点があるのかを探ることが、経営戦略の充実につながると実感しました。これに加え、新たなビジネスモデルやそれに伴う技術開発の場合、どのような収益構造が想定されるか、様々な視点から考察するディスカッションは非常に実践的であり、幅広い視野を養う良い機会となりました。

データ・アナリティクス入門

平均値の罠に気づいてデータを活用する方法

平均値の危うさを再認識 今回の学習で、平均値の危うさを改めて知りました。例題を通じて、グラフにすると簡単に理解できる数値もあれば、解釈が難しい数値もあると感じました。代表値と散らばりをうまく活用して、仕事に活かしたいと思います。 正規分布と2SDルールに興味 これまでも様々なグラフを見たことはありましたが、平均値の名称と内容について初めて深く理解できました。特に、正規分布と2SDルールはとても興味深かったです。 標準偏差の応用は可能? 標準偏差の数値でデータの散らばりを明確にすることも応用できそうです。弊社オウンドメディアにおけるコラムのオーガニック流入の記事ごとの順位を、分布グラフを用いて検証してみたいと思いました。それにより、カテゴリーを大分類し、リライトの優先順位を決めるなどの応用が期待できます。 新たな発見を期待して まずは、今回学んだ内容をしっかり復習し、これまで手をつけていなかった集計にも活用してみます。そうすることで、新たな発見や課題が生まれることを期待しています。さらに、TOP10の記事のキーワードリサーチにも、この解析手法を試してみたいと思います。

「本 × 基本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right