クリティカルシンキング入門

効率的な課題特定で未来を創る

どう考えて選ぶ? 相手にメッセージを伝えるためには、何をどのようにすべきかを明確にすることが重要であると学びました。また、課題を的確に特定することが、すべての基本になると思います。今後は、明確に課題を特定し、自分が直面している問題をしっかり考える習慣をつけたいと思います。 なぜすり合わせる? 毎日多くの業務をこなす中で、深く考える時間が取れていないのが現状です。このままでは、さらに仕事が増えてしまうと感じています。そこで、ミーティングでは課題解決や共有すべき内容をしっかりすり合わせたいと思います。 どの議題を用意? 毎週行われるミーティングでは、事前にどのようにディスカッションを進めるか、何を課題として捉えるかを準備しておこうと考えています。適切な議題設定とその活用を通じて、実践していきたいと思います。

マーケティング入門

効率だけじゃない、心の体験

感情価値を追求する理由は? 昨今の市場環境では、単に機能的価値を提供するだけでは顧客を満足させることが難しくなっています。顧客満足を実現し、真の差別化を図るためには、「体験」という情緒的価値の追求が欠かせません。 業務効率と情緒的価値は? 私の業務は、効率化や業務圧縮を目的としたツールやシステムの提供が中心ですが、その先のクライアントに対して情緒的価値を届ける意識を持つことが重要です。 多様なニーズに応えるには? また、社内の複数のステークホルダーを顧客として捉え、日々の業務依頼を通してそれぞれのニーズや課題に応えることを心がけています。 体験で業務改革は? BPOやBPR業務においては、顧客に「楽になった」という体験を提供することが本来の目的であることを忘れず、今後も業務に取り組んでいきます。

マーケティング入門

信頼が導く本音の宝探し

本当のニーズとは? 顧客ニーズは必ずしも一つに絞られるわけではなく、本人すら認識していない複雑な側面が存在します。真のニーズを把握するためには、調査を通じてフィードバックを得ることが有効ですが、日本人の特性や報酬型の場合、遠慮して本音が聞きにくいケースもあるため、まずは信頼関係を築いてから本題に入ることが大切です。 潜在ニーズは何? また、真のニーズをさらに深く探ることで、新たな発見につながる可能性があります。自社の製品領域にとらわれず、顧客が直面している状況や立場を広い視野で捉え、他の潜在的なニーズについても丁寧に掘り下げる姿勢が求められます。 信頼はどう築く? 今後は、各種キャンペーンのアンケートや顧客との打ち合わせの機会を積極的に活用し、信頼関係の構築を意識しながら取り組んでいきたいと思います。

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

データ・アナリティクス入門

データ分析で仮説と検証を学ぶ

仮説の立て方を見直すには? 今まで、データ分析において仮説から検証のプロセスをなんとなくで行っていたが、複数の仮説を立てることや、網羅性を持たせることはあまり意識していなかった。また、立てた仮説の検証だけでなく、反対の事象を裏付けるデータも収集することで、より説得力のある仮説検証ができる点も意識すべきだと感じた。 データ分析を業務にどう活かす? 今後、業務でデータ分析を行う際には、仮説立てから検証までのプロセスを意識的に組み込むようにしたい。現在取り組んでいる運転資本の改善についても、問題がどこにあるのか(Where)を仮説立てし、既存のデータから分析を行うようにする。そして、Whereが特定できた後には、なぜその問題が生じたのか(Why)の仮説を立て、その仮説を立証するための分析方法を検討するつもりだ。

データ・アナリティクス入門

仮説実践!即断で未来を掴む

効果測定は本当に? A/Bテストの実施により、短期間で効果測定が可能であることを実感しました。一方、単にデータ収集に時間をかけるだけでは、必ずしも問題解決には結びつかないということが分かりました。 分析時間は適切? 業務を進める際、初めはデータ分析から始めることが多い中、分析に時間をかけすぎる傾向があると感じています。一定量のデータが得られた段階で、迅速に仮説を設定し、追加の分析が必要かどうかを判断するか、実行フェーズに移行するかを見極めることが重要だと学びました。 行動開始のタイミングは? このコースを通じて、仮説に基づき行動に移すタイミングの大切さを再認識しました。今後は、データ分析に没頭しすぎず、適宜ストップしながら、仮説思考を軸にした実践的なアプローチを心がけたいと思います。

クリティカルシンキング入門

グラフで魅せる伝え方の秘訣

グラフ選びは何が肝心? キーメッセージに合ったグラフ選びが大切です。まず、読んでもらうために、キーメッセージの工夫を重ねる必要があります。抽象的な内容ではなく、具体的なメッセージを用いて、上司や顧客に何を伝えたいかを明確にすることが求められます。 スライドの心得は? また、何のためのメッセージなのか、細部まで考えたうえで資料を作成することが重要です。作成する際には、本当にこのスライドで良いのか、読み手に分かりやすい文章になっているかを意識し、今後のアクションや示唆も資料に落とし込むように努めます。 日々の見直しはどう? 日々の業務においても、必ずキーメッセージを念頭に置いて文章や資料の作成を行います。どのスライドも、この内容で問題がないか、無駄な部分がないかを常に検討することを心がけています。

マーケティング入門

対面で引き出すお客様の真心

どうして深掘りする? 顧客のニーズを正確に捉えるためには、顧客が不満に思う点を深く掘り下げる必要があると学びました。実際、顧客自身が気づいていない点も、アイスブレイクを交えながら信頼関係を築くことで、従来の不満以外の情報を引き出せる可能性がある点が印象に残りました。 訪問の意義は何? 自社商品の改善点を模索する中で、今後は顧客先を訪問した際に、信頼関係がすでにある方と個別にお時間をいただき、ざっくばらんに不満やご意見をお聞きしたいと考えています。また、他の社員からも、顧客先で得た不満の情報を収集して、全体の改善に役立てられればと思います。 なぜ対面が必要? 最近ではリモート会議で済ませるケースが増えていますが、やはり対面での会話でしか本音を引き出せないのかという疑問が残ります。

クリティカルシンキング入門

論点で切り拓く未来への挑戦

講義の反省点は? 講義全体を振り返る中で、自己の意識に偏りがあったことを改めて実感しました。今後は、常に論点(イシュー)を意識し問い続けるとともに、ピラミッドストラクチャーやロジックツリーを活用し、MECEの原則に基づいて課題や問題を漏れなく、かつ重複せず整理しながら論理的に解決することを心がけたいと思います。 日常業務の課題は? また、日常業務で直面する問題や課題については、経験や勘に頼るのではなく、データと事実に基づいた論理的な思考を徹底する必要があると感じました。そのため、常に論点を念頭に置き、ピラミッドストラクチャーやロジックツリーを用いて体系的に整理し、根本原因や真因にまでたどり着けたかを振り返りつつ、再発防止の仕組みを確実に運用していきたいと考えています。

データ・アナリティクス入門

Excel実践で磨くデータ思考

データ分析の意味は? データ分析では、比較と独自の観点が価値を生むと感じました。基本的な内容でありながら、Excelでの実践的な手法を学ぶ中で、自分の思考プロセスが整理され、視野が広がったと実感しています。 フレームワーク活用の秘訣は? 今回学んだフレームワーク、たとえばファネル分析や3C、4Pなどを中心に活用したいと考えています。定期的に振り返りを行うことで、より効果的な比較ができるよう意識して取り組むつもりです。 転職後の展望は? さらに、業務においても今回の学びを基礎として活用します。今後、データマーケティング職への転職が決まっているため、壁にぶつかったときは学んだフレームワークや思考プロセスに立ち返り、より広い視野で問題に取り組む方針です。

アカウンティング入門

B/Sから読み解く本当の企業姿

B/Sの全体像をどう見る? 以前はB/Sが単に借金の割合を示すものだと考えていました。しかし、同じ業態でも経営戦略によって大きな違いが生じることが分かりました。流動資産と固定資産、流動負債と固定負債、さらには負債と純資産の割合など、さまざまな観点から企業のビジネスモデルと実態が読み取れると実感しました。 実務で何を得る? また、B/Sの理解は具体的な実務の場面でも大いに役立ちました。たとえば、グループ企業との賃金制度交渉の場面や、企業の経営実態をP/LとB/Sを組み合わせて読み解き、今後の投資判断の材料にする際に、B/Sの知見が活かされました。さらに、全社のB/S資料を読み込み一覧化することで、各企業や社内稟議の参考資料としても役立つことが分かりました。

データ・アナリティクス入門

データの裏付けで説得力アップ

データ分析の本質は? コンサル業におけるデータ処理では、これまで感覚で平均値や中央値、さらには円グラフや棒グラフの選択を行ってきました。しかし、平均値だけではデータのばらつきや分布の特徴が十分に表現されないため、標準偏差のような指標を用いることで、データが平均値付近に集中しているのか、ばらつきが大きいのかを把握することができます。また、ヒストグラムや円グラフといったビジュアル化ツールは、データの全体像を直感的に理解するのに役立ちます。 成果向上はどう実現? 今後は、根拠に基づいた値の選択やグラフの作成を行うことで、自己のパフォーマンス向上はもちろん、ジュニアメンバーへの指導においても説得力のあるアドバイスが可能になると感じています。

「今後 × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right