データ・アナリティクス入門

グラフで魅せる平均の真実

どの平均を採る? 平均という言葉一つをとっても、その状況にふさわしい計算方法を採用しなければ、意味をなさないと感じています。どの平均値を用いるべきか、またどの数値を算出すべきかを十分に理解し、それぞれに合った平均値を出すことが大切だと思います。さらに、グラフを活用することで、視覚的にわかりやすい情報提供ができると考えています。 ビッグデータの平均は? 実際のところ、現在の業務においては平均値を用いる場面はあまりありません。しかし、扱うデータ量が多いビッグデータの現場では、いずれ必要になると予想されます。その際には、どの平均を選択すべきかを慎重に検討し、わかりやすいグラフによってデータを効果的に提示していきたいと思います。

データ・アナリティクス入門

実例でわかる抜け漏れゼロの分析術

抜け漏れチェックはどうする? 分析の要素を検討する際、抜け漏れや重複がないかどうかを意識することがとても重要だと感じました。これまで、何気なく分析要素を挙げていたため、知らないうちに抜け落ちたり、同じ内容が重複してしまったりするケースがあったと思います。今後は、ロジックツリーなどの手法を活用し、適切かつ網羅的な分析要素を抽出できるよう努めたいです。 売上向上に本当に効く? また、離職率の改善や売上増加といった課題に対して、今回の学びが有効に活かせると感じています。動画で紹介されていたように、離職の原因分析や売上向上のために何がネックになっているのかを明確にすることで、具体的な対応策を検討する際の手助けになると考えています。

データ・アナリティクス入門

仮説が切り拓く新たな視点

仮説設定はなぜ必要? データを加工する前に、まず仮説を立てることが非常に重要です。分析は目的があって成り立つため、単に数値や結果そのものにとらわれず、目的に照らした適切な加工方法を検討する必要があります。数値をそのまま受け取るのではなく、自分の観点を加え、他にどんな見方ができるのかという視点の多様性を意識します。また、確からしい仮説の立案のみならず、素早く検証するスピード感も大切です。 分析視点はどう選ぶ? 月次や週次の業務分析においては、どの角度からデータを切り分けるのが最も適切かを常に考慮します。分析後は、まとめた内容が本当に正しい観点に基づいているか、過去の踏襲に陥っていないかを再検討することが求められます。

戦略思考入門

組織文化が光る差別化の秘密

差別化のポイントは? 差別化という一見わかりやすいキーワードですが、その考察で陥りやすいポイントを学ぶことができました。差別化を追求する中で、検討に十分な時間をかける必要がある点にも一理があると感じました。また、模倣しにくさの要因として組織文化が重要であるという視点は、これまであまり意識していなかったため、非常に新鮮でした。 組織の強みはどこ? 自分たちがどのような組織背景と文化の中で顧客に価値を提供しているのかを整理し、どこに強みがあるのかを明確にしながら業務に取り組むことが必要だと実感しました。今後は、顧客との接点やその前段階となる組織内マネジメントにおいて、常にこの視点を忘れずに意識していきたいと考えています。

マーケティング入門

不便な声に隠れた意外なヒント

顧客の声はどう捉える? 自社商品の見せ方や顧客視点の重要性について学びました。顧客の意見は「こうだったらいい」という具体的な要望だけでなく、「なんだか不便だ」という抽象的な感覚も含まれており、こうした意見を正確に読み取り、分析し、形にすることができる企業は強いと感じました。 なぜ意見を深掘り? これまでお客様からのフィードバックは担当部門が単に処理するだけで流し読みされることが多かったですが、今後は意見をより深く掘り下げ、根本原因と対応策を慎重に検討する必要があると考えています。 売れない理由は? また、売れていない商品にもしっかりと目を向け、その原因を明らかにし、解決策を検討することの重要性も痛感しました。

戦略思考入門

ROIの数字で実務を再考する

数字評価の意味は? ROIを数字で評価することで、状況が非常に理解しやすくなったと感じます。特に、技術戦略提案書などの背景構築にどのように反映できるか、実務で検討してみたいと思います。 投資対効果ってどう? 一方、ROI「投資対効果」だけで優先を決めるのは、必ずしも最適とは言えないという疑問も残りました。自身の業務については、これまで投資対効果を意識したことがなかったため、改めて工数実績から計算し、優先順位を見直す必要があると考えています。 捨てる選択はどう? また、ROIは捨てる選択を判断する際には有用だと感じた一方で、ROIのみで優先すべき項目を決めた場合に上手くいくかどうかには、やはり懸念が残りました。

データ・アナリティクス入門

多角的思考で拓く仮説の極意

全体視点は必要? 仮説は、全体を見渡す視点を持って立てる必要があります。複数の仮説を構築し、網羅性のある状態を維持することが重要だと感じました。 反省にどう向き合う? しかし、仮説が一度立てられた時点で、それで満足してしまうことがあると反省しています。今後は、複数の観点から仮説を組み立て、観点の漏れがないよう努めたいと思います。 検討のポイントは? 具体的には、課題解決のプロセスにおいて「ヒト・モノ・カネ」や「業務プロセス」といった基本の観点を軸に仮説を検討していくことが効果的だと考えています。また、一度仮説を立てた後には、他に見落とすべき観点がないかどうかを常に問い直す姿勢を持つように心がけたいです。

戦略思考入門

競合を超える学びの秘訣

差別化のカラクリは? 差別化を細分化することで、他社に対する優位性の原泉を見出すことができると学びました。さらに、競合他社だけでなく、同様の取り組みを進めている他業種にも目を向ける新たな視点が印象的でした。 BRIOで何を発見? また、BRIO分析においては、普段意識されにくい模倣困難性という要素に気付くことができ、これが大きな発見となりました。 戦略をどう活かす? これらの学びは、現在担当しているクライアント様向けのサービスにおける差別化や基本戦略の方向性を合わせる際に、大いに活用できそうです。視点を統一することによって、次のステップとなるアクションプランの検討も進めやすくなると感じています。

クリティカルシンキング入門

問いから始まる成長物語

具体的問いの意義は? 問いに対して具体的に考えることが重要です。何を問われているのかを常に意識し、その問いを組織内で共有することが求められます。問いを明確にした上で要素を分解し、解決策を検討していく姿勢が大切だと実感しています。 管理職課題の見直しは? 現在、管理職向けの研修課題の検討に取り組む中で、漠然とどのような課題が良いのかを、ネット上の情報やAIに頼りながら考えてしまっていた自分に気づきました。まずは研修実施に至った経緯を振り返り、そこで生じた課題を再確認してイシューを設定することが必要と感じています。今後は、常に具体的な問いを意識し、目的や意図を明確にした上で論理的に物事を整理していきたいと考えています。

データ・アナリティクス入門

多角的視点で拓く仮説の世界

仮説の検討ポイントはどう? 仮説を立てる際には、決め打ちにせず複数の切り口から検討し、最終的に絞り込むことが大切だと学びました。これまで経験や感覚に頼って仮説を組み立てがちでしたが、具体的な切り口を示された項目を取り入れることで、抜け漏れなく考察できると実感しています。また、実験における仮説とビジネス上の仮説の違いについても触れられ、理解がより深まりました。 今後の視点はどうする? 今後は、各切り口ごとに書き出し検討するプロセスを重視し、複数の可能性を広く考慮した上で仮説を選ぶ方法を実践していきたいと思います。自分自身はもちろん、他者の意見を尊重しながら、幅広い視点を活かすことに努めたいと考えています。

データ・アナリティクス入門

比較の技術が未来を変える

比較技術はどう? 分析において「比較」という考え方が、どのような状況下でも基本となると強く感じました。評価が難しい内容についても、適切な比較を行えば納得のいく結果が得られる点が興味深く、あらゆるシーンで適切に比較を行う技術を身につけることが今後の課題だと思います。 過去データの活用は? また、スケジュールの計画や見積もり作成時に過去のデータを参考にすることはしていましたが、複数のデータや各プロジェクトの特性を考慮する視点が不足しており、根拠が十分でなかった側面がありました。今後は、複数のプロジェクト実績や見積もりを比較検討することで、より説得力のある提案が行えるよう努めたいと思います。

データ・アナリティクス入門

単純平均だけじゃない!学びの深層

代表値選びのポイントは? あまりにも多くの消費者データを見る際、単純平均だけで全体を判断してしまう傾向にあると改めて感じました。そのため、代表値の計算方法を再検討する必要があると実感しています。代表値として単純平均、加重平均、幾何平均、中央値の4つの方法があること、またそれぞれのばらつきを標準偏差で評価するプロセスが欠かせない点を改めて認識しました。 標準偏差の意義は? また、標準偏差の公式は覚える必要がないといわれていますが、その理由についてより深く理解したいと考えています。√の記号に初めて触れたのは高校生の頃のことだったので、改めてその意味や背景について興味を持つようになりました。

「検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right