戦略思考入門

競争優位性を築くための差別化戦略の極意

顧客視点の差別化戦略 差別化を考える際には、まず顧客の視点を重視することが重要です。単に「競合と異なる」だけではなく、自社が実現できることや競合が真似しにくいことを意識することで、競争優位性を持つ施策となります。今回の講座では、ポーターの3つの戦略やVRIO分析のフレームワークを学びました。それらを活用することで、「顧客にとって価値があるのか」、「顧客視点で競合を意識した施策か」、「実現可能性や持続可能性があるか」を判断し、効果的な差別化を行うことが重要です。 コンセンでの優位性構築法とは? また、講座で学んだポイントを活かせば、コンタクトセンター運営においても差別化を図り、競争優位性を築くことができると感じました。顧客体験の向上やテクノロジーの活用、人材の育成とエンゲージメント、社会的課題への対応、持続可能性と社会貢献を総合的に考慮することで、他社との差別化を実現し、持続的な成長を目指すことができると考えます。 競合情報の収集法は? さらに、競合他社の情報をさらに詳しく知る必要があります。公式ウェブサイトやプレスリリース、年次報告書を定期的にチェックし、業界レポートや市場調査を活用するとよいでしょう。顧客インタビューやアンケート調査で直接フィードバックを得たり、ソーシャルメディアやオンラインレビューサイトを監視したりすることで、情報収集を行います。また、業界イベントやネットワーキングでも情報を集め、SEOツールやソーシャルメディア分析ツールも活用して、競合のオンライン活動を分析します。

アカウンティング入門

仮説と実践で切り拓く経営視点

例題企業をどう予測? 実践演習では、まず例題企業の事業活動を予測し、売上、売上原価、そして資産についての仮説を立てました。その後、グループワークを通じて各自の仮説をもとに議論し、お互いの視点を共有することができました。 数値の不一致はなぜ? 仮説を立てた後に財務諸表を確認することで、予測と実際の数値に差があった項目について、その理由を深く掘り下げることが印象に残りました。 ライバルはどこに投資? また、ライバル企業や関係企業の財務諸表を参照し、どの部分に投資しているのか、今後のビジネスの方向性をどのように読み解くかを学ぶ貴重な機会となりました。 経営層に確認すべき? 自社のケースでは、公開されている最新の情報をもとにP/LやB/Sの内容を確認し、増減要因について仮説を立てた上で、不明点があれば経営層に確認する方法の重要性を実感しました。 各社の特徴は? さらに、同業他社の公開されている財務諸表を、ビジネスモデルが異なる数社分について仮説をたてた後に確認するというプロセスは、各社の特徴を理解するうえで非常に有意義でした。 おすすめ書籍は? また、先生におすすめいただいた書籍のうち、1冊目はほぼ読み終えたため、残る2冊目についても読了を目指したいと考えています。 次のステップは何? 今回の振り返りでは、今後のステップとして資格試験の勉強を通じてアウトプットするか、または次回の講座の受講を検討するかという方向性について真剣に考える良い機会となりました。

データ・アナリティクス入門

心に響く受講生のリアル声

分析の流れは? 分析とは、情報を分類し整理して、比較対象や基準を設ける作業です。データには種類があり、それぞれに適した表現方法を選ぶことで、どのように加工し見せるかが重要となります。また、分析のプロセスは、まず目的を明確にし、次に目的に沿ったデータや項目を選び、その上で実際にデータ分析を行い、最後に結論やまとめを導く、という流れが求められます。特に目的の明確化、データ・項目の選定、そして結論づけが重要です。 原価推移は分かる? 現在、立ち上げ中の製品原価推移を毎月報告し、現状を集計して前回との比較を行い変化点を確認しています。この報告は現状把握を目的としているものの、集計データから見える原価と、量産化後に実際に把握される実原価との間には差異が存在します。 差異の原因は? そのため、この差異を低減するために、必要な情報が何かを検討し、データ収集と分析を実施することが求められます。どこに差異が発生しているのかを把握し、解決のための打ち手を提案することが目的です。 どのデータを選ぶ? 比較に用いるデータとしてどの項目を選定するか考えると、多くの情報が存在するため、どこから手をつければよいのか迷うこともあります。まずは、既に把握している情報から仮説を立て、検証を進めるのが良いでしょう。その際、データをどのように加工し分析につなげるかに注意する必要があります。特に実原価を正確に把握するためには、人、物、時間といった要素が流動的である点に注意が必要です。

マーケティング入門

SNS活用で広がるマーケティングの可能性

顧客の多様なニーズとは? 顧客のニーズは多様であり、商品PRを通じてそのニーズを正確に伝えるには大変な労力が必要です。カレーメシの事例が示すように、競合との差別化を考慮しながら情報を発信する必要があります。顧客の潜在的な欲求にうまくアプローチすることで、新たな市場の開発にもつながります。 売れる商品の背後にあるものは? 普段私たちが手にする「売れている商品」には、ネーミングや商品・サービスの設計まで緻密なマーケティング戦略が存在します。売り場でその商品を目にするたびに、その戦略の巧妙さに感心します。 商品観察からの学びを活かすには? 商品を直接扱ってはいないものの、日常的に目にする商品を観察しながら新たなアイディアを練ったり、深掘りすることが重要です。そして、どのように顧客にメッセージを伝えているか、伝えようとしているかを考えることが必要です。視点を変えながら「WHO」と「WHY」を常に意識し、業務に取り組むことが大切です。 メディア広告の考察が重要な理由は? 新商品のメディア広告やCMを見て、それがどのターゲット層に、どのようなメッセージを伝えようとしているのかを考察することも有益です。さらに、バックオフィスの業務においても効率化できる場面がないか再検討する価値があります。 SNS観察で得られる知見とは? 個人的には、SNSを活用して企業がどのように広告を打ち出しているのかを観察し、マーケティングの知識を深めていきたいと考えています。

マーケティング入門

対話で創る本物の体験

体験の差別化は? 「体験を考える」というテーマを通じ、ただ優れた商品を提供するだけでなく、その商品を通して得られる独自の体験が差別化につながるということを再認識しました。具体的には、個々の商品に飛び抜けたものがなくても、全体で見ると顧客が大満足しているという事例から、唯一無二の体験を提供できることの重要性を感じました。 一人だけでは? また、総合演習では、顧客視点で考える難しさを痛感しました。一人で考えを広げるには限界があるため、チームでの意見交換やヒアリング、アンケート、さらに顧客の行動観察など、さまざまな情報収集が必要だと実感しました。 顧客の本音は? 今後は、クライアントの心理を的確に捉え、常に顧客の立場に立って何が求められているのかを考えながら、対話や観察を行っていきたいと思います。私たちの商品を単に売るのではなく、顧客にとって「必要なもの」と感じてもらえるよう、デザインやネーミングにもこだわっていく所存です。 価格競争を避ける? さらに、無駄な価格競争を回避するため、市場分析のフレームワークを活用し、ターゲットを明確に絞り込んで自社の強みを存分に発揮できる商品作りに取り組みたいと感じました。 顧客体験の検証は? 訓練項目としては、まず顧客がどんな体験を望んでいるのかを考えること、次に売れない商品がどのような体験につながるのかを検証すること、そして、全体を俯瞰して良い体験を生み出す方法を模索することが挙げられます。

データ・アナリティクス入門

平均だけじゃ見えないデータ

平均値だけで大丈夫? 今週の学習を通して、データを扱う際に平均値だけを確認するのは不十分であると改めて実感しました。平均値はデータの中心傾向を示すものの、ばらつき(分散や標準偏差)を反映していないため、データの特性を正しく理解するには中央値や最頻値など他の代表値も併せて確認する必要があると感じました。 グラフの選び方は? また、データを直感的に把握するためには、単なる数値の羅列ではなく可視化が重要です。グラフの種類を適切に選ぶことで、データの傾向やパターンがより分かりやすくなります。時系列データには折れ線グラフ、カテゴリごとの比較には棒グラフ、割合を示す場合には円グラフなど、目的に応じた使い分けが求められると再認識しました。 代表値はどう使う? 普段、さまざまな部署とデータ分析を行っている中で、平均値だけではなく他の代表値を用いることや、適切なグラフを選択することが業務に直結する重要な要素となっています。これまで平均値のみで示していたデータに対して、中央値や最頻値を加えることで、より正確な解釈につながると感じています。 今後どう進める? 今後は、データを扱う際に平均値に偏らず、中央値や最頻値、分散などの情報も徹底的に確認します。また、他者が作成したデータや可視化についても、目的に適しているかどうかをチェックし、必要であれば適切な改善点を提案することで、誤った解釈を未然に防ぎ、正確な意思決定につなげていきたいと考えています。

戦略思考入門

戦略思考で紡ぐ新たな挑戦

全体戦略をどう考える? 戦略的思考とは、論理的なシナリオを構築することであると捉えています。まずは全体を俯瞰し、外部環境を広く観察する中で、市場、競合、顧客と自分自身を比較して、何を実現しようとしているのか、大きな流れを把握できました。その中で、どの領域に注力し、どのように差別化を図ることで最短・最速で目標に到達するかが明確になりました。一方、各種フレームワークを用いてシナリオを組み立てる際に、それぞれの整合性をとる必要があるため、習熟するまでには時間がかかると感じています。 自分の立ち位置は? また、業界や企業を自分自身のものとして捉え、言語化することで、フレームワークを自分のツールにしていきたいと考えています。 新規企画の挑戦は? 今回の学びの経験を活かし、医療・ヘルスケア領域での新規プロジェクト企画に挑戦したいと思います。エネルギー領域の技術調査では多くのデータが蓄積されている一方で、新たなプロジェクト領域については未知の部分が多く、先人の知見を参考にしながらフレームワークを活用し、抜け漏れのない計画を進める所存です。 実行計画はどう進む? 具体的なスケジュールとしては、まず部下とフレームワークの知識を共有して調整を図り(~5月末)、その後6月上旬に新規プロジェクトの大枠となるシナリオを作成します。さらに、6月下旬には不足している情報をヒアリングや調査で補い、7月上旬までに事業計画書に反映させる予定です。

クリティカルシンキング入門

データ分析で企業課題を解決!

データ利用の意味は? データを用いる際には、何を表しているのかが明確であり、求める情報を把握できることが重要であると再認識しました。データを全体的に理解し、必要な情報が簡単に見つけられるように工夫を凝らすことも大切です。 目的設定はどうする? データを分析や検証に活用するには、明確な目的を持つことが欠かせません。また、データを分解する際にはMECE(Mutually Exclusive, Collectively Exhaustive)を意識し、様々な観点から分解を試みることが重要であると学びました。 決算分析の秘訣は? 私の会社での月次・年次決算や予実乖離分析にもこの手法を活用できると考えています。これまでの分析では、売上や利益などの主要な数字の推移に依存しており、MECEを用いた分解を行わなかったため、説明できない誤差が残ることがありました。しかし、このスキルを活用することで、予実乖離分析をより正確に行えると感じています。全体の財務諸表を、顧客別や顧客売上別、利益別、部品別といった様々な視点で分解し、正確な分析に結びつけたいと考えています。 コスト要求はどう対処? また、不定期に発生する顧客からのコストダウン要求に対して、社内のコスト把握と顧客要望との比較分析を行うことも目指しています。そして、24年度の予実乖離分析を行ったうえで、25年度の予算作成に反映させ、より正確な計画を作成したいと考えています。

データ・アナリティクス入門

データの見方で変わる分析の魅力

代表値と平均値の意味は? 「代表値」の取り方によって、仮説そのものが変わるため、スタート時点ではデータが正しく取得されているか確認が必要です。また、「平均値」は何を表すために使用するのかを確認する必要があり、すべての現象に平均値が適切であるわけではありません。代表値が正しく算出されているかどうかは、確認できれば行うべきです。例えば、前月や前年同月と比較して、結果が適正範囲であるかどうかを確認することが有効です。 標準偏差の目的は何? 「標準偏差」については、業務で適用するケースがほとんどなく、代表値同士を比較して分析する機会が少なかったと感じています。しかし、標準偏差を確認することで、実際のばらつき具合を把握できる場合があります。 データ推移をどう捉える? また、数字だけの表が緑・赤・黄に色分けされているなど、見た目でわかりやすくしていますが、これが単月でしか使用されていない現状があります。数ヶ月ごとのデータ推移を比較し、グラフ化することで、情報をより深く読み取ることが可能になります。 新たな可視化方法は? 可視化においては、円グラフやヒストグラムを多用していますが、それ以外の手法を取り入れることが少ないと気付きました。他の表現方法を取り入れ、第三者に訴える視覚的なグラフを作ることを試みたいと思います。むしろ、意図的に不適切なグラフも作成してみて、それがどのように不適切に見えるかを学ぶことも重要です。

マーケティング入門

顧客の声を形にするビジネスの秘訣

顧客ニーズはどう捉える? 顧客のニーズを的確に捉えることの重要性を痛感しました。たとえばある企業では、顧客の声を反映してマスクや服装といった製品を生み出し、需要不足という問題を解決することで、良い事例となっています。このように、顧客のペインポイントをゲインポイントに変換することが重要であると理解できました。また、製品のネーミングにも工夫が求められます。顧客発想で名前を考えると、商品を認知しやすく、具体的なイメージも湧きやすくなるため、顧客自身の行動を促しやすいと感じました。 自社の強みをどう活かす? さらに、企業は自社の強みを理解し、それを活かして顧客が求めるものを提供することが大切です。競争が激しく、商品や法令が厳しい中での差別化は難しいですが、改めて自社製品を選ぶ理由や、そのメリットを細かく分析していくことが必要だと考えます。また、潜在顧客については、カスタマージャーニーを実施して、新たに分析を始めることの必要性を感じました。自社の強みについても、再考する必要があると実感しています。 顧客の行動可視化の方法は? 具体的には、顧客からのアンケートを再度読み直すことが第一歩です。次回のアンケートでは、施策や欲しい情報だけでなく、「なぜ選んだのか」といった基本的な部分も問いかけたいと思います。さらに、顧客向けのインタビューや観察を通じて、顧客の行動をより可視化し、ターゲット設定の見直しを図りたいです。

データ・アナリティクス入門

数値が導く学びの冒険

数字はどう見える? まず、数字の見方について考えると、仮説を立てた上でデータを収集し、その後の分析で仮説の検証を行うという流れが基本だと感じました。AIを使って情報を収集する場合でも、自分なりの考えを持ち、AIから得られた情報と自分の意見を照らし合わせることが大切です。もしも自分の予想と結果が異なった場合、その違いがどこから生じたのかを考えることで、新たな学びのヒントが得られると実感しています。 代表値はどう見る? 次に、データの見方としては、代表値に注目しました。単純平均、加重平均、幾何平均、中央値など、データの性質や目的に応じて使い分けることが必要です。また、散らばりを示す指標としては標準偏差があり、これらの数値をグラフ化することで、直感的に状況を把握できる点も魅力的だと思いました。 業務の数値活用は? 普段の業務では、商品の売上や原価、コストダウンの検討などで、いろいろな平均値を算出することが新たな発見につながるのではないかと感じています。そして、その結果を他者に説明する際に、グラフを活用することで、理解を深め、合意形成をスムーズに進めることができると確信しています。 AIで何を発見? 日常の業務の中で、実際に数値をAIに入力して計算やグラフ化を試みることで、これまで気づかなかった事実や見逃していた視点を発見できるのではないかという期待があります。来週には、何かの案件で試してみるつもりです。

データ・アナリティクス入門

比較思考で紐解く学びの極意

分析の意味は何? 「分析は比較なり」という言葉は、普段何気なく耳にするものですが、今回改めてその意味を強く感じました。データ分析において、必要な情報を集めることに注力し過ぎるあまり、単にデータを並べただけで満足してしまい、見る人によっては分析結果の捉え方に差が生じる場面があったと実感しています。動画学習では、適切な比較対象を選ぶことの重要性にも触れ、データを揃える行為は無駄ではないものの、分析の目的や見せ方を意識しなければ本来の意味での分析にならないということを認識しました。 物流の選定はどう見直す? この考え方は、物流部門における利用業者の選定や見直しにも応用できると感じます。たとえば、ある条件がある場合とない場合で、一律運賃が設定される荷主とそうでない荷主の運賃総額を比較する手法が考えられます。 大手と中小の差は? また、単純に大手業者と中小業者を料金面で比較するのではなく、企業の規模や対応する配送範囲が同様である業者同士で運賃を比較することが、より適切な分析につながると理解しました。 比較対象の妥当性は? さらに、自分が揃えたデータが本当に比較に適したものかどうか、常に振り返りを行うことが大切です。普段利用している輸送業者に注目し、過去の実績が明確な業者だけを比較対象にしている現状を見直し、新たな業者や新しい地区の業者も検討することで、より多角的な視点を持つことができると感じました。

「情報 × 差」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right