戦略思考入門

顧客視点で差別化!戦略的アプローチ

なぜ顧客目線が大事? 差別化を考える際には、まず顧客の視点が重要であることを学びました。簡単な施策では競合他社も同様のことを実行している可能性があるため、競合の動向をリサーチすることも必要です。差別化を実現するために、3C分析やVRIO分析などのフレームワークを活用し、実現可能かつ持続可能な方策を考えていきたいと思います。 ターゲットは誰? まず、ターゲットを明確にすることが重要です。施策の対象となる顧客が誰なのかをはっきりとさせます。そして、競合他社のリサーチを行い、彼らの特色や優位性を理解することが必要です。 報告はどうまとめる? これらの情報を基に、フレームワークを用いて実現可能な施策を考えていきたいと思います。まずは業界全体の特色を整理し、その中で自社の特色や優位性を理解し、まとめていきます。広い視野で業界を先読みし、市場分析を行うことで他社との差別化を図り、経営会議で報告できるようにしたいです。報告資料には十分なエビデンスを含め、経営層が納得できる内容にしたいと考えています。

クリティカルシンキング入門

視点を広げるセグメント分析の挑戦

切り口は十分ですか? 切り口については、もれなく重複なく組み合わせ、詳細化できていました。しかし、視点が不足していることに気づきました。例えば、お客様の分け方や、店舗側の情報の分け方など、他にないかと自問を繰り返し、新たな示唆を模索したいと思います。 社内情報の組み合わせは? お客様の情報に基づく分解は行っていたものの、社内の情報、例えば地域、経験年数、所属組織などを組み合わせることで新たなセグメントを作れないか試してみます。また、差がないことが判明することも価値のある情報だと理解しました。そこで、まずは試してみるという姿勢で臨むことにしました。 データの傾向はどうですか? 具体的には、まず切り口の分類として、お客様情報、営業社員情報、商品情報などを挙げ、それぞれの分類を詳細化します。そして、来週月曜日にデータに適用して傾向を確認する予定です。さらに、詳細化を進めるために切り口の組み合わせを試し、数字だけでなくグラフで視覚化することで、全体像を捉えたり、比較しやすい状態にします。

アカウンティング入門

財務分析で見出す成長戦略の鍵

PLのポイントを押さえるには? PL(損益計算書)の仕組みを理解し、各利益間に注目することで、どの部分に費用がかかっているのかを把握できることがわかりました。粗利を上げるためには、提供する価値を明確にし、それに見合う価格設定が重要であることを理解しました。 財務諸表で何が見える? 自社と競合他社の財務諸表を確認し、どこに費用がかかっているのか、自社と競合との違いを分析するために活用したいと考えています。さらに、異なる業界の会社の財務諸表を通じて、業界ごとの差異を理解することも目指しています。 IR情報で業界特徴を学ぶには? 自社および競合他社のIR情報を確認し、利益構造にどのような違いがあるのかを把握したいと思っています。また、異業種の会社のIR情報も調査し、業界特有の違いについて学んでいきたいです。そのうえで、自社の課題が見つかった場合、なぜそのような状態になっているのか、そしてどのように改善すれば良いのかを考えていきたいと考えています。

データ・アナリティクス入門

比較が照らす学びの軌跡

比較の意義は何? 「分析とは比較である」という考え方を実践することができました。その他のデータと比較しながらその意味合いを考察することが、分析の基本であると再認識しました。具体的には、数字による集約、視覚的に捉える方法、そして数式で関連性を見るといった3点について学びました。数字の集約では、平均値のみならず、データの散らばりを示す標準偏差の役割も重要だと理解しました。また、データの中心を考える際には、単純平均、加重平均、幾何平均、中央値といった複数の指標があることを確認できました。 実務への応用は? ヒストグラムの作業では、実際に手を動かすことでその理解が深まり、自身の業務において作業プロセスのミスの発生度合いなどを視覚化する際に活用できると感じました。また、気象庁の温度データを用いた演習を通じて、公開情報からデータをダウンロードして利用する方法を再認識しました。今後は、こうしたデータ活用の手法を実務に積極的に取り入れていきたいと思います。

データ・アナリティクス入門

数値に隠れた学びの秘訣

単純平均で十分? まず、単純な平均値の算出だけでは誤解を招く結果になる可能性があると感じました。標準偏差を用いた分析、加重平均の導入、さらには外れ値を除外して計算するなど、数値として意味のある手法を用いる必要があるという考えに至りました。 NPS集計はどう変わる? また、問い合わせ対応後に実施しているNPSの集計についても、状況に応じた評価が重要だと考えます。障害発生時のNPSスコアと、通常の問い合わせ時のスコアが大きく異なるため、障害などの背景情報を考慮に入れて集計した方が適切であると思いました。 状況別スコアの信頼性? さらに、NPSの回答スコアは状況によって変動するため、その状況に関する詳細な情報を併せて提示し、分析の軸として活用することが望ましいと感じています。どのような状況でどの集計方法が最適かを試行錯誤しながら、知識とスキルを磨いていきたいという思いが伝わりました。

戦略思考入門

差別化で自社の未来を切り拓く!

競争優位性の重要性とは? 自社の経営戦略を考える上で、競争優位性を維持するためには差別化が重要であると学びました。特に自社の強みを網羅的に分析するには、VRIO分析が効果的であることを理解しました。 VRIO分析の役割は? また、VRIO分析は来年度以降の事業戦略や営業戦略を検討するうえで非常に有益なツールであると認識しました。顧客との会話で、なぜその商材が必要なのかを深掘りしてヒアリングする際にも、差別化という視点を持つことで、新たな視点から情報を整理できると思いました。 差別化要素の再整理計画 今後は、まず2月中にVRIO分析を実施し、差別化要素を再整理したいと思います。その後、足りないケーパビリティを補うための活動を実践します。さらに、差別化要素の持続的可能性を向上させるために、日本人だけでなくローカルスタッフを巻き込み、要素維持が可能な環境を整備したいと考えています。

データ・アナリティクス入門

数字が語る学びの軌跡

なぜ統計手法を重視? 平均値だけでは数値のばらつきを捉えきれないと実感しました。仮説を立てる際、標準偏差や中央値など多様な統計手法を併用することが大切だと改めて感じます。また、データをビジュアル化することで仮説の精度が向上し、分析のアプローチ自体も変わり得る点が印象的でした。 どう評価を改善? 今回のコンテンツ運用アンケートでは、これまで尖った意見や単一の数値に頼った評価に偏っていた部分を改善するヒントを得ました。今後は、仮説を明確に立てた上で、比較や傾向を意識した深いデータ分析を心がけていきたいと思います。 整理で何が見える? さらに、既に収集しているアンケートデータの整理を実施し、情報の過不足を確認する予定です。初めてのデータビジュアル化にも挑戦し、その結果は次回以降の運用改善のための知見として、適切な知識管理ツールで整理していきます。

データ・アナリティクス入門

データ活用で見えた新たな気づき

平均値の選び方は重要? 平均値には様々な種類があり、その選択はデータに大きな影響を与えます。外れ値がある場合、平均値よりも中央値を採用することが重要であり、データのばらつきを数値で示すために標準偏差を使用することが効果的であることを学びました。 輸送会社ごとの加重平均とは? 私たちの事業所で使用する輸送会社の使用率を考慮し、加重平均を採用することで、待機料などの平均額をより正確に把握することができると考えました。 データの明確化を目指して 費用や作業時間を集計するアプリを使い、加重平均と標準偏差を計算することで、数値の差を明確化し、より精度の高い平均値の算出を目指しています。 実績データとの比較はどうする? これらの処理結果として得られた加重平均値を基に、毎月の実績データと比較し、データの妥当性と信頼性を確認する予定です。

「情報 × 差」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right