クリティカルシンキング入門

データ分析で学ぶ!実践で磨く思考力

結論は本当に正しい? データを扱う際には、まず計算して情報を加工し、複数の視点から分解し、得られた結論が本当に正しいかどうかを疑うことが重要だと学びました。表や数字を眺めて悩むよりも、実際に手を動かして考える方が効果的であると感じています。 調査結果をどう見る? これからは、マーケティング調査の結果を見て、どのようなニーズが存在するのかを理解するために使おうと思っています。これまでは、マーケティング部から提供された考察を読み、データに違和感がなければ納得していました。しかし、今後は得られたデータを自分で加工および分解し、その上で考察してみようと思います。そして、共有された考察が本当に正しいのかについても疑いの目を持つことを心がけたいと思っています。 自分で検証してみる? 今後、調査結果が共有された際には、自分でもデータを一度加工・分解してみるようにします。MECE(Mutually Exclusive, Collectively Exhaustive)を意識しつつ、まずは手を動かして、加工や分解に慣れることを目標とします。そして、得られた考察には常に疑問を持ち、自分の意見を形成したら、他の人にもそれを共有するように心がけます。

クリティカルシンキング入門

自問自答が育む確かな自信

疑問で自信は築ける? 自分に自信を持つという言葉はよく耳にしますが、私が感じる自信は、クリティカルシンキングという批判的思考の結果として生まれるものです。問いを立て「本当にこれで良いのか?」と自問自答を繰り返すことで、思考や表現方法が次第に洗練され、結果として自信へとつながっていくと実感しています。 伝え方はどうする? また、情報を発信する際には、誰が読んでも理解できる内容であることを意識しています。文章やプレゼンでは、主張したいポイントをさまざまな手法で表現し、聞き手の注意を引く工夫が重要です。会議や議事録においては、問題の核心(イシュー)がすぐに確認できるように記載することで、参加者全員が共通の理解を持てるよう努めています。さらに、周囲を巻き込み、動いてもらうためには、納得感を与える具体的な根拠を提示することが大切です。 意見で成長する? 加えて、アウトプット後は時間を置いて再確認する習慣をつけています。自分だけでなく、他者にフィードバックを求めることで、より良い成果につながると考えています。会議の際は、最初に目的(イシューやゴール)を明確に説明し、参加者にとっての行動のメリットを意識した根拠を示すよう心がけています。

データ・アナリティクス入門

データ分析の魅力に触れる旅

なぜ目的を決めるのか? 「分析とは比較なり」という言葉が分析の基本を表しています。まず、比較を行うための目的をしっかりと決定し、その目的に合った適切な比較対象を選ぶことが重要です。そして、得られた比較結果をどのように視覚化・言語化して伝えるかも、分析の重要な要素です。これらが全体的に連携し、一つの体系としてまとまっていることで、分析は効果的に行われます。各ステップで適切な判断を行うことにより、データ分析は精度を上げることができます。 有効なデータの活用法とは? プロジェクトの進捗状況の把握や遅れの可視化と原因分析、製品の製造データの分析、それを基にした工程改善案の提案、さらに最終製品の性能・品質データの分析とそのトレンドの原因の把握など、それぞれの場面で明確な目的と最終的な活用イメージを持って分析を行うことが重要です。これによって、効果的なデータ分析の結果を示すことができるでしょう。 データ収集から始めるには? 特に最終製品の性能・品質データの分析には豊富なデータがあり、因子もある程度特定されています。自らがデータを入手しやすい立場にあるため、早速データを集めて分析を進めていこうと思います。まずはデータの収集から始めてみます。

デザイン思考入門

本音に迫る新人研修の裏側

研修の成果はどこで感じる? 新人研修企画に向け、複数の社員に対してオープンエンドな質問を行い、今年1年の振り返りや研修会に対する印象など、豊富な定性的情報を引き出すことができました。中には「正直覚えていない」「配属されてからでないと分からない」といった回答もあり、知識のインプットは十分ながら実体験が伴わないため、研修がその場限りになっているという共通の課題が浮かび上がりました。 調査の難しさは何だろう? 一方、調査自体はまだ始まったばかりですが、対象者自身が気づかないような暗黙知にまで踏み込むのは非常に難しいと感じました。自身の仮説を提示し、それに対する意見は得られるものの、一歩踏み込んで本音の課題を引き出すためには、相手の領域やコミュニティに深く入り込む必要があると実感しました。 定性分析の説得力はどうする? また、定性分析はどうしても恣意的なまとめ方になりがちで、説得力に欠けるという懸念がありました。これに対して、定量分析で明らかになった結果は一般的すぎる面があるため、数値以外の情報を加えた上で、定性的な情報の根拠として定量データを補完的に用いることで、より説得力の高い分析が実現できるのではないかと考えるようになりました。

クリティカルシンキング入門

コツコツ学びが仕事を変える

学習時間はなぜ難しい? 今回の勉強は、以前のデータ分析の際とは異なり、毎朝コツコツと学ぶ時間を確保することが難しく、順調に進めることができませんでした。一方、実務で自然に意識していた内容が学びの一部に反映され、知識の整理に役立ちました。その結果、全体としては勉強になったと感じています。 グループ参加はどう感じる? また、グループワークへの参加については、後から参加したほうがよかったと反省しています。今後は、初めから積極的に関わることで、より多くの視点を取り入れたいと考えています。 問題の解決策は何だろう? さらに、問題解決に没頭してしまいがちな反省もあります。なぜその問題を解決する必要があるのか、根本的な問いを持つことに意識を向け、アプローチを見直すことが必要だと感じました。加えて、人に伝えることにまだ苦手意識があるため、伝え方の手法をさらに学び、業務に生かす努力を続けていきたいと思います。 知識はどう実践する? 前回受講したデータ分析の勉強と今回の学びを組み合わせ、より深い知識として業務に実践していくつもりです。今後も、言いたいことを明確にする思考法や伝え方の訓練を続け、日々の業務に活かしていきたいと考えています。

リーダーシップ・キャリアビジョン入門

現場で輝くエンパワメントの秘訣

エンパワメントの本質は? エンパワメントには、自立性の促進と支援という2つの要素があることを学びました。現代では、命令管理型のアプローチが通用しにくく、エンパワメント型のリーダーシップが求められていると感じます。 利用シーンはどう? しかし、エンパワメントが有効な場面と、ミスが許されない状況とでは、使い分けが必要であることも理解しました。常に適切なエンパワメントを実施するのは難しいものの、相手の状況や能力を把握することはリーダーシップを発揮する上で共通して大切な要素だと思います。 背景はどんな理由? 実際、担当先でタッグを組んでいる後輩や、同規模の担当先を持つ同僚に指示を出す際にエンパワメントを活用することで、モチベーションが高まり、結果的に業務の効率化と高質化につながると感じました。メンバーそれぞれの長所と短所を把握し、適切に役割分担をすることが重要です。 具体例は何? なお、私自身は営業職のために目標設定が比較的明確ですが、業務内容の具体化が難しい分野で活動されている方も多いのではないでしょうか。各自の業務で具体化に苦慮される部分や、目標設定に当たってのポリシーがあれば、ぜひ教えていただけるとありがたいです。

クリティカルシンキング入門

会議力を高めるための新提案

伝わりやすさを重視してみると? 日本語では、言葉を発する際に主語や述語が抜けがちであることから、伝わりやすい言葉を組み立てることの重要性を意識しました。相手に明確に伝えるためには、「言語選択」「概念」「順序立て」そして「根拠づけ」が必要です。これには、ピラミッドストラクチャーを活用して、伝えたい要素を事前に整理することが効果的であると学びました。 会議やメールでの活用法は? 日々の業務、特に会議での発言やメールなどで、相手に結論を伝えたり、結論を求める際にこれらの技法を活用できると思いました。業務報告をする際には、最初に相手が知りたいポイントを考えてから話を始めることで、より効果的になります。伝達を簡潔にし、話が長くなりすぎないようにすることで、自分も相手も論点を見失わずに済むでしょう。 議論で結果を出すためには? 議論の場ではまず結論を提示し、その後に根拠を説明します。こうすることで、何を求めているのかを明確に示せます。自分が伝える立場に立ち、どのように聞いたり見たりすれば相手が納得するかを考えることが大切です。そのために、根拠を複数準備しておく必要があります。さらに、内容は思いつきで作らないことも心掛けるべきです。

データ・アナリティクス入門

分析で見える!自分の可能性を探る旅

分析目的をどう定める? まず、分析を行うためには、その目的を明確にすることが大切です。分析の核心は、物事を比較することにあります。適切な比較対象を選ぶ際には、「apple to apple」を意識し、時には目に見えないデータとも比較することが求められます。仮説を立てた上で、分析を進めることが重要です。また、分析結果を可視化する際には、その目的を常に念頭に置くことが求められます。 新しい業務の分析に必要な視点は? 新しい業務に取り組む際には、市場規模や競合他社、収支計画など、多岐にわたるデータを使用し、取り組む価値があるかどうかを分析します。コンサルティングなどの導入時においては、従来の定性的な説明に加え、コスト、業務効率化、収益への影響についてデータに基づく分析を行い、より説得力のある説明が求められます。 仕事の本質をどう理解する? 次に、「自分が何をしたいのか」を明確にし、自身の仕事の本質を正確に理解します。その上で、なぜ分析が必要であるのかを整理します。分析を始める前に仮説を立て、その仮説を検証するために必要なデータを収集します。最終的には、分析結果を適切に可視化し、周囲を納得させられるようにすることが重要です。

デザイン思考入門

受講生が綴る成長と共感の物語

デザイン思考はどう変わる? デザイン思考は、当初は外見や部分的な要素に焦点が当てられていましたが、徐々に全体設計へのアプローチへと発展してきました。お客様への共感を軸とすることで、顧客にとって本質的な課題解決を目指す姿勢は、単に技術的に高度であるだけではなく、実際に役立つ製品やサービスへと結実するために不可欠です。 技術進歩と課題は何? また、AIの進化により、ITシステムの試作が容易になったため、全体プロセスの回しやすさは向上しています。しかしながら、細部の制御が難しい現状では、あと一歩の実現に大きな工数と時間が必要となるケースも見受けられます。加えて、顧客と製品やサービスの提供者はそれぞれ別の利害を持つため、どうしても緊張関係が生じるという課題があり、こうした点を含めた総合的な方法論の整備が望まれます。 試作と提案はどう進む? 今後は、ChatGPTなどを活用して顧客の発言から課題やソリューションを分析し、その結果を基にReplitで試作案を作成、実際に顧客に提示するという流れが実現できるのではないかと考えています。授業を通して、こうしたプロンプトの設計など、具体的な手法を確立していくことが目標です。

デザイン思考入門

小さな失敗が大きな変革に

どうしてデザイン思考? ライブ授業の録画を視聴して感じたのは、従来のロジカルシンキングだけでは達成し得なかったイノベーションを、デザイン思考で実現できるのではないかという期待です。特に、ユーザーが抱える潜在的な課題を見える化することで、本質的な課題が明確になるという点に大きな意義を感じました。 どうして顧客不在? また、結果を出せない組織には「顧客(ユーザー)不在」という共通点があると感じています。私の職場では、新しい企画を提案すると「予算は?」「担当は誰が?」、「上層部が賛同しない」といった否定的な意見が次々と出され、そのために改革が進んでいない現状です。厳しい状況下で経営層を巻き込むのは難しいですが、自らの業務の中で「ユーザーは誰か」「どのような喜びを提供できるか」「どんな困りごとがあるのか」を常に意識することが、デザイン思考を活かす第一歩だと考えています。 プロトタイプの効果は? 当面は、自分の担当業務の範囲内でデザイン思考のプロセスを実践していこうと思います。特に、プロトタイプを用いた検証プロセスは、試行錯誤を通じて小さな失敗から学ぶ大きな醍醐味だと感じており、これを繰り返すことで改善を図っていく所存です。

デザイン思考入門

体験から生まれる驚きと気づき

体験から何を感じた? 実際に体験することで、ユーザーの気持ちに気づく大切さを学びました。調査実施時、直接体験できない場合でも、身近な人々の行動を想像し、その視点から課題やニーズを探ることが重要であると感じています。さらに、可能な範囲でインタビューを実施し、具体的な問題点や求められているものを丁寧に理解するよう心がけています。 体験が生む共感とは? また、実際に体験しなければ気づけない部分が多いことを改めて実感しました。ユーザーが体験している状況を自らも体験することで、共感の場が生まれ、より深くユーザーの視点を理解できると感じています。 商品開発のヒントは? 一例として、キリンの第3のビール『本麒麟』の開発プロセスが紹介されました。まず定量調査で過去の失敗を洗い出し、その結果を踏まえて定性調査を実施することで、ユーザーニーズ(インサイト)を具体的に把握。このプロセスは、社内メンバーを説得する際の根拠となり、商品開発への示唆にもつながると学びました。 体験で共感深まる? さらに、バックパックに関する事例では、ユーザーと同じ体験をすることで得られた気づきが、より深い共感へと結びついたことも印象に残りました。

戦略思考入門

数値での判断で変わる未来

数値で判断すべき? 意思決定をする際には、何かを捨てることが必要です。定性的に判断すると、顧客との関係性や歴史、背景などにより、判断が鈍ることがあります。そこで、数値を用いて定量的に判断し、感情に左右されないようにする検証が求められます。 指標はどう設定? 結果が出る前に、成功と失敗、継続と終了の指標を設定することは、感情的な判断でロスを増やすことを防ぐ手助けとなると感じました。実践においても、数値を基に判断しないと、歴史や背景から意思決定にゆがみが生じる可能性があると感じています。そのため、さまざまな角度から数値を確認し、安易に判断しない姿勢を保つことが大切です。 引き算は効果的? 基本的に積み上げ式の足し算で運用されることが多いですが、あえて引き算を行い、顧客への伝わりやすさを意識するべきです。ターゲットに何を伝えるべきかを考慮した上で、捨てることを決定します。 判断基準は整ってる? 捨てる際には、以下の点を確認します。①本来の方向性は何か?②ブレークスルーとなる案はないか?(一石二鳥の案)③現状は中途半端ではないか?④トレードオフが発生していないか?これらを検討し、捨てることを意思決定します。

「結果 × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right