クリティカルシンキング入門

多角的な視点で本質を探る思考法

フレームワークは有効? 5W1Hといったフレームワークを活用することで、モレやダブりを防ぎながら、迅速に考えをまとめることができると感じています。また、物事を複数の切り口から分解してみると、表面的には見えなかった本質が見えてくることがあります。一度や二度の分解で結論を出すのではなく、「本当にそうか?」と批判的思考を持ちつつ、別の視点を探ることを心がけたいと思います。 具体例はどう分析? 具体的な活用例としては、アンケート集計結果の分析があります。例えば、性別や年代別、地域別に分解し、さらにクロス集計することで、表面上では分からなかったデータの特徴を発見する可能性があります。また、企業審査における決算書分析でも有用です。売上の増減要因を確認する際に変数分解を行い、事業者の申出内容との整合性を判断することができます。もし整合性がない場合は、事業者が気づいていない点を指摘し、経営アドバイスを行うことができるでしょう。 どう切り口を見出す? 私の役割として、部下が行うアンケート集計の分析結果をレビューする立場にあるため、「別の切り口はないか」という視点を大切にしています。また、別の切り口を見つけた場合、そのことを指摘するだけでなく、分解の必要性やその切り口を採用した理由もきちんと伝えるように心がけています。

戦略思考入門

戦略思考で未来を切り拓く秘訣

戦略思考を深掘りするには? 戦略思考について改めて考えてみました。具体的なフレームワークを用いて書き出してはいないのですが、一部については無意識に頭の中で実行していたようです。ですが、文字に起こすことにより、自分の理解を深め、より具体的な形にすることができました。 進捗確認のポイントは? 新規プロジェクトの立案だけでなく、進捗の確認の際にも、「ゴール確認→環境分析→捨てる勇気」といったプロセスを繰り返すことで、効率的かつ効果的な結果を得られると感じます。さらに、最新の動向に基づいた分析が必要だと考えています。マニュアルや慣習に依存しがちな面があるため、それにも注意を払いたいです。 自分の言葉は合ってる? また、他人の話を聞いてわかった気になるのではなく、自分の言葉でアウトプットすることも重要です。目標設定だけでなく、その目標に至る過程、特に「捨てられるものはないか」を意識することが肝心です。慣例的に行っていることが本当に必要なのか、利益が停滞していないか、しっかりと精査する必要があります。 変化にどう対応する? さらに、時代の流れを敏感に捉え、情報収集を怠らないようにし、過去の成功体験に囚われない姿勢が重要です。自社や自分の強みを振り返り、差別化を意識し続けることが求められます。

データ・アナリティクス入門

比較で見える新たな視点

比較方法はどう決める? 分析の基本は比較にあります。分析対象をただ単に見るのではなく、相違点や類似点を明確にするため、対比できる条件を設定しながら進めることが重要です。 数値の意味はどう捉える? 定量分析を行う際は、単に数値の平均値や個数を求めるだけではなく、その背後にある意味を捉えることが求められます。例えば、男女のデータ分析においては、単位に数値を割り当てた場合の平均値そのものに意味はなく、それぞれのグループの人数や全体に占める割合を把握することで、ターゲットや戦略を導く上で有効な情報が得られます。 グラフの選び方はどうする? また、データの視覚化は、分析結果を他者と共有する際に非常に有効です。グラフを用いることで、複雑な情報も整理され一目でわかるようになりますが、データの特性に応じた適切なグラフ形式を選ぶことが大切です。 仮説設定をどう見る? さらに、分析においては、目的や仮説を明確にしてから着手する姿勢が重要です。分析する際は、比較対象となる条件を十分に整え、個々のデータに対してどの指標(個数、平均値、標準偏差など)を用いるかを慎重に検討することが必要です。自分が伝えたいメッセージと、相手がどの程度の情報を理解できるかを意識しながら、適切なグラフや表現方法を選ぶことも忘れてはなりません。

データ・アナリティクス入門

データ分析に固執しない学びの本質

効果検証を改善するには? 今週の講義内容は、すでに実践していることをさらにブラッシュアップして継続する必要があると感じました。特に効果検証については、ノイズを排除しきれずにABテスト自体が難しい場合や、施策の実施数が多く、全ての分析を物理的に行うことが困難な場合があります。 デジタル時代のデータ分析とは? デジタル領域では、質よりもスピードが重要な場面が多くありますので、完璧なデータ分析に固執しすぎないことも心掛けたいです。データ分析はあくまで結果を出すための一つの手段に過ぎず、それ自体を目的としないことが大切だと再認識しました。 仮説思考を磨くために何が必要か? また、仮説思考を鍛えるためには、思考力を磨くことが最も重要だと感じました。情報を集めたり事象を分析しているだけでは、思考の精度は上がりません。本当に必要な情報を見極めるために、何のために情報を集めるのかを自分の頭で考えるトレーニングが必要です。 行動で成果を生み出す方法は? さらに、答えを持っている人に対して自分の仮説を試してみることも大事です。不正解でも良いので、アウトプットする機会を増やし、トライアンドエラーを繰り返すことが重要です。成果は行動することでしか生み出せないため、とにかく積極的にアクションを起こすことが求められます。

データ・アナリティクス入門

データ分析で見つけた成功への鍵

分析の基本は比較にあり? 「分析とは比較である」ということが、今まで感覚的に行っていた私にとって、必須であると改めて理解しました。また、多くの人の前でプレゼンテーションを行うため、データを分析する際には、まず「仮説」を構築した上でデータ加工に取り組んでいました。そのため、明確な目的や主張のない分析は行っていませんでしたが、一方で期待していた比較結果が得られなかった場合には、仮説を素直に見直すことの重要性を認識しました。 新しい業務への挑戦 普段の業務では、「分析とは比較である」という意識が習慣化しています。しかし、これから新しい業務に挑むにあたっても、この「比較」を意識し続けたいと考えています。特に、生存者バイアスのかかったデータに基づく業務になる可能性があるため、失われているデータとの比較を心がけたいと考えています。 成功と失敗事例の見極め あるプロジェクトでは協力業者の選定が多数必要となりますが、彼らが持参するのは成功事例が多いと予想されます。そのため、成功事例の裏に隠れている失敗事例を手に入れ、成功事例だけに基づいた「比較」に陥らないよう注意したいと思っています。直感的に考えたことを「仮説」とし、その後、生存者バイアスを避けた適切なデータを比較・分析し、プロジェクトの成功を目指したいと考えます。

データ・アナリティクス入門

論理で見つける本質のヒント

ロジックとMECEの意義は? 今回、ロジックツリーとMECEの考え方の重要性を学びました。実際の業務ではロジックツリーを使用していますが、MECEについては十分に意識できておらず、その結果、抜け漏れや重複が生じることがありました。今後は生成AIを活用し、漏れやダブりがないかを確認していきたいと考えています。 問い合わせ対応の真意は? また、ユーザーからの問い合わせに対しては、単に表面的な対応にとどまらず、ユーザーが抱えている本質的な問題をしっかりと把握することの大切さを再認識しました。たとえば、ユーザーから「椅子が壊れたから直してほしい」と依頼があった場合、単に椅子を修理するだけでなく、一体何に困っているのか(What)、どの部分が壊れているのか(Where)、なぜ壊れてしまったのか(Why)、そして今後の対策(How)についても考え、包括的に対応することが求められます。 本質追求はどうする? さらに、ロジックツリーを活用して、ユーザーが本当に必要としていることをWhatの視点で明確に考え、抜け漏れがないかを網羅的に確認する視点を持つことが重要だと感じました。思考の順序は、最初にWhat、次にWhere、そしてWhyの順に進めることを意識し、具体的かつ論理的な対応を心がけたいと思います。

データ・アナリティクス入門

業務に役立つ分析スキルを身につける方法

予測を立てる重要性は? グラフなどの資料を見る際、自分なりの予測を立て、仮説を立てて実態との違いを確認することは重要です。このプロセスでは、仮説の誤りをマイナスに捉えず、新たな課題や問題に気づく機会として扱うことが求められます。 分析のサイクルをどう回す? 分析の基本である「目的・仮説・データ収集・仮説検証」のサイクルを回すことについては、業務で分析を行う際に疎かになっていたと反省しました。数字に集約した分析を学ぶなかで、代表値(単純平均、加重平均、幾何平均、中央値)や散らばり(標準偏差)のそれぞれが適した状況で使い分けることが重要であると再認識しました。 患者数低下の原因とは? 紹介患者数の低下対策を立案する際、まず分析のプロセスをしっかりと踏むことが大切です。特に目的を明確にすることで、求めたい結果を得るためのポイントとなります。次に、どの視点で分析を進めるかを判断し、グラフや数字を用いて実行していきます。 具体的には、紹介患者数低下の分析では、近隣医療機関からの紹介の減少が課題(目的・問い)となります。減少の要因について仮説を立て、その後、取るべき分析の視点(インパクト・ギャップ・トレンド等)を考慮してデータを収集し、グラフ化・数値化します。最後に、分析結果と仮説を検証し、対策を立案します。

リーダーシップ・キャリアビジョン入門

リーダーシップとコミュニケーションの実践例

キャリアをどう理解する? 「キャリア」や「リーダー」とは何か、という疑問が本講座を通じて少しずつ解明されてきました。 ロールプレイからの学びとは? LIVE授業でのロールプレイでは、上司役としてフィードバックを行う際、相手にとって望ましくない結果をどう伝えるかが課題となりました。仕事は常に「対:人」であり、相手の価値観、得手・不得手、仕事の仕方はすべて一人ひとり違います。そのため、相手をよく知り、よく見ることが重要だと実感しました。今後も相手に応じた適切な支援を心がけていきたいと思います。 エンゲージメント向上の手法は? 私は、メンバーとの日常的な関わりだけでなく、全社的なエンゲージメント向上プロジェクトにも参加しています。そのため、リーダーの関わりがどのようにメンバーのモチベーションに影響するか、日々のコミュニケーションがいかに重要かを強く認識しています。これらの気づきを社内で共有し、組織の活性化に貢献していきたいと考えています。 メンバーの対話をどう促進する? 関わるメンバー(上司も含めて)と対話し、互いの価値観をオープンにできる機会と雰囲気を創ることが重要です。メンバーの経験や価値観に応じて適切な支援ができるよう、今回の学びを振り返りながらリーダーシップを実践していきたいと思います。

クリティカルシンキング入門

業務成功の鍵はイシューの特定!

イシュー設定の重要性に気づく 業務に取り組む際のイシュー(本質的な問い・課題)を立てる重要性とその方法を理解しました。これまでは業務の本質的な課題を意識することを忘れていましたが、その大切さに改めて気づかされました。また、状況に応じてイシューが変化する可能性があること、一度立てたイシューを継続して意識し続けることの重要性も感じました。 フロー作成時のイシュー特定法 新規業務のフロー作成や既存業務のフロー確認において、まずイシューを特定することに着手します。突発的な業務についても、その場の感情や流れに任せず、必ずイシューを特定するよう努めます。また、状況に応じてイシューが変わる可能性を理解しているため、固定されたルーティン業務でも定期的に振り返り、その業務のイシューを再確認していきます。 議論を活かすために必要なこと 新規業務のフロー作成や既存業務のフロー確認、イレギュラー案件や突発的な依頼、会議など、議論の場においてもイシューを特定し、全員で方向性を共有することで建設的かつ適切な根拠をもとに議論が進みやすくなると感じました。社内アンケート結果をもとに課題を抽出する際にも、まずイシューを特定することを心がけ、その際には過去に学んだピラミッドストラクチャーを活用して根拠が明確になるようにします。

アカウンティング入門

振り返りが生む分析力と発見の旅

指標分析の重要性を理解する 売上高、営業利益、経常利益、当期純利益といった指標の順番で分析することの重要性を学びました。分析に際しては、比較や対比を用いて傾向の変化や大きな相違点を見出すことが必要です。 説明を丁寧にする意識を高める ケーススタディの設問に答える際に感じたこととして、コアな部分は捉えられているものの、顧客心理の説明においては、もう少し丁寧に説明する必要があると気づきました。これは、言葉足らずな部分を丁寧にカバーすることを軽視していた結果であり、もっと丁寧に説明する姿勢が重要だと実感しました。今後は、説明の出口部分から意識をより高めていこうと思います。 提供価値の分析と強化点は? 自社の提供する価値と競合他社の価値をP/Lから分析し、それによって自社が強化したい点や改善すべき点を考えてみます。さらに、自分が関わる事業の商品やプロモーションで今後どのように注力していくかを検討したいと思っています。 数字の定着と今後の計画 自社のP/Lデータはすでに確認しましたが、数字を頭に定着させるために直近2年分と今期の予測を自分でまとめ、空で言えるようにしてみようと思います。競合他社のデータについては、今後数週間で確認する予定です。そして、推薦いただいた本もぜひ読みたいと思っています。

データ・アナリティクス入門

データ分析で結果を出すための工夫

データ分析の目的を明確に データ分析を行う際には、以下の点を重視する必要があります。 まず、分析の目的を明確にすることが重要です。分析の本質は比較にあり、適切な比較対象を選ぶことが求められます。そのためには、どのような項目をどのように分析するかという仮説を立て、それに基づいてデータを集め、分析することが必要です。そして、目に見えないデータや事象も考慮しながら、見せ方(例えばグラフなど)にも注意を払います。 マーケティング成果発表の準備は? 分析をする際の初めのステップは、「誰に」「何を」伝えるためにこの分析を行うのかを明確に意識することです。特に、次の期のマーケティング部門の成果発表で伝えるメッセージを考えるには、この意識が不可欠です。 来期施策に活かす分析のポイント 次に、来期の施策の布石となるメッセージを考えます。そのためには、まずどういうメッセージが良いかを考え、会社の方向性を確認します。その方向性とメッセージがつながっているかを検証した上で、どんな項目をどのように分析するのが適切かという仮説を立てます。実際にデータを集めて集計し、仮説の正しさを検証します。 このプロセスを通じて、有効と感じた施策や取り組みを数値的な裏付けをもとに発表し、来期の施策に活かしていくことが重要です。

データ・アナリティクス入門

合宿で描く未来のマーケ戦略

方向性はどう決める? 来年度に向けた部としての1年間の方向性とTODOを検討する合宿で、今回学んだ内容を活かすことができると感じました。合宿では、現状できていることとできていないこと、そして今後必要なソリューションについて話し合いました。具体的には、今後重要になると予想される広告指標について、各ソリューションごとの導入実績を比較し、2024年の傾向を把握することが求められると認識しました。また、現状のホットなマーケティングトピックから、今後伸びるであろうKPIを仮定し、その上でどのようなソリューションを開発すべきかを検討しました。 情報はどう集める? さらに、分析においては、情報やデータの収集方法が非常に重要であると感じました。普段あまり活用していなかった社内のポータルや事例集なども積極的に利用し、必要な情報が何か、足りない情報はないかを意識しながら、学んだプロセスに沿って分析に取り組んでいくつもりです。 分析の進め方は? また、データ分析の基本として、目的を明確にし、仮説思考でアプローチすること、比較を重視すること、そしてwhat→where→why→howというプロセスで考えることの重要性を再確認しました。これらの考え方を実践することで、より具体的な分析結果が得られると実感しています。

「結果 × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right