データ・アナリティクス入門

仮説構築のフレームワークで実力アップ

仮説構築で何を優先すべき? 仮説構築のポイントについて学んだことは、以下の通りです。 まず、仮説構築では複数の仮説を出すことが重要です。3Cや4Pといったフレームワークを活用し、網羅性を持たせることが求められます。決め打ちにしない姿勢も大切です。 次に、仮説を絞り込むための基準としては、具体的なデータや根拠が必要です。たとえば、SNSのプロモーションが弱いと判断する場合、その根拠を明確にする必要があります。 どのデータを用いるべき? データ取得や計測前には、指標の絞り込みが重要です。何を比較すれば仮説が立証されるのかを確認します。例えば、故障件数ではなく、1件あたりの対応時間を指標とすることが有効です。 また、比較対象のデータも集める必要があります。Aが正しいというだけでなく、BやCを否定するデータも必要です。これにより、より説得力が増します。 仮説検証の鍵とは? 仮説には「結論の仮説」と「問題解決の仮説」があり、それぞれの使い分けと違いを意識することが重要です。問題解決の仮説では、社内のシステム切り替えにおいて複数の製品候補の中から1つを選ぶ際、網羅性のある原因究明と問題箇所の特定が求められます。A製品が良いというデータだけでなく、他の製品(B, C)がダメというデータも揃えることで、Aの比較優位性を証明することができます。 フレームワーク選択の重要性 仮説検証のシミュレーションでは、まず仮説の洗い出しを行います。3Cや4Pのフレームワークが適用できるかどうかを検証し、適していない場合は他のフレームワークを検討します。 最後に、データ検証の洗い出しでは、取得可能なデータの確認と、どの指標が計測・取得すべきデータなのかを特定します。これにより、仮説の検証がスムーズに進むでしょう。 以上のポイントを踏まえて、仮説構築と検証のプロセスを実践していくことが大切だと感じました。

戦略思考入門

規模と範囲の経済性の鍵を探る

経済性の基本は? 規模の経済性と範囲の経済性について、大変興味深い学びを得ました。 規模経済って何? まず、規模の経済性についてです。これは企業が生産量を増やすことで、一単位あたりのコストが下がる現象を指します。生産量の増加により、固定費やその他の生産コストが分散されるためです。例えば、自動車工場を開設するには高い初期コストが必要ですが、同じ設備で多くの自動車を生産することで、一台あたりのコストが低下します。大量に材料を購入することでさらなるコスト削減も可能です。つまり、大規模生産に移行するほど、コスト競争力が向上します。 範囲経済はどう? 次に、範囲の経済性についてです。異なる商品を一緒に生産することで、単独生産よりコストが下がる現象です。これは生産プロセスや資源を共有できるためです。例えば、パンとクッキーを生産する食品会社では、同じ設備やスタッフを共用し、具材も小麦や砂糖などを共通して利用します。また、マーケティングも一つのブランドで複数の商品を宣伝することで、コストが抑えられます。多様な製品を生産することで、資源の効率的活用とコスト削減が実現します。 業務集約は効果的? 私の業務においても、本社業務の移管や支店業務の集約が行われています。各支店で個別に行っていた業務を一か所に集中させることで、全体のコストが削減されています。中央集権的な運営によって、標準プロセスの導入やシステムの活用を可能とし、業務効率を向上させています。 未来の効率化は? 今後はさらにプロセス効率化を図るため、IT技術やAIなど先進技術の導入が必要です。各支店が独自にノウハウを築くよりも、集中管理の方がコスト削減に寄与しています。実績を定量的に評価するため、時間工数の記録を行うことも重要です。業務を巻き取って新たに業務を構築する際には、時間工数以外の成果を事前に考慮することが必要であると学びました。

デザイン思考入門

問いで開く新たな学び

インタビュー設計はなぜ? 顧客のニーズを発掘するため、「参加型デザイン」「インタビュー設計」「ワークショップ設計」を学びましたが、現状の業務では時間やリソースの制約があるため、「インタビュー設計」が最も適していると感じました。イシューを明確にした上で、そのイシューに基づいた質問を作成するために労力をかける必要がありますが、顧客に過度な負荷をかけずに実践できる手法だと思います。 どうして質問を工夫? また、質問を検討する際には、オープンエンド形式で詳細な問いを投げ、回答に影響を与えることなく実情を引き出す工夫が必要です。そのため、現行のサービスに関する質問だけでなく、そのサービスが使われる状況や日々の業務の流れまで把握できるような質問項目を作りたいと考えています。 なぜ非機能要件に注目? さらに、インタビューの準備を進める中で、機能要件だけでなく非機能要件にも焦点を当てることで、潜在的な問題を掘り下げられる可能性に気づきました。たとえば、ある業務において印刷が必要な場合、ありがちな解決策は印刷スピードを上げたり、印刷枚数を減らすといった機能的な対策ですが、本質的な問いとして、そもそもその印刷が必要なのかという疑問を持つことも大切だと感じました。このように、インタビューを通じて共感を得るためには、しっかりとした準備と工夫が不可欠です。 ヒト中心の考えはどう? 最後に、私が重要だと感じたのは、物事を「ヒト」を中心に捉え、絶対的な正解がないこと、ルールに縛られすぎずに柔軟に考える姿勢が必要だという点です。システム全体に目を向けると、その枠組み内でしか考えられない恐れがあります。そこで、「ヒト」の行動に注目することにより、問題の本質に近づける可能性があると感じました。ただし、その視点も自分のバイアスに偏らないよう、常に疑問を持ち、広い視野で捉えていくことが大切だと思います。

リーダーシップ・キャリアビジョン入門

問いと行動のギャップを超えて

質問は本当に伝わる? 振り返りの中で「質問に学ぶ」というテーマについて、まだ十分に消化しきれていないと感じています。プロセス自体は理解しているものの、実際の行動と言葉が一致せず、あいまいな質問になってしまっている点が課題です。 課題解決の流れは? 具体的には、以下のステップを意識しています。まず、①何が課題・問題なのか、その問題が本当に問題なのかを見極めます。次に、②どこが悪いのか、何が問題なのかを明確にします。さらに、③なぜそうなったのか、本質的な原因を追求します。続いて、④どうするのか、解決策を考え、⑤どうやってやるのか、具体的な実施時期や手順を検討します。 業務の進行はどう? 現業務ではシステム開発に従事しており、4月の本番稼働に向けて、日々残タスクの進捗や新たな課題の発生状況をフォローしています。しかし、限られた時間の中で相手としっかり共感し、次のアクションにつなげられているのかどうかは悩ましい点です。 対処はなぜ進まない? 特に、残タスクが即日対応されず、翌日も状況が変わっていない点は大きな問題です。できない理由を明確にしてほしいという思いもあります。また、新たな課題が発生した場合、影響の有無や影響がある場合の回避策、制約事項、解消時期など、具体的な情報が全く出てこないことにも困っています。 習慣はどう定着する? こうした状況を踏まえ、定型質問のように毎回同じ質問をすることで、双方が習慣として身につけられるように努めています。また、今のフェーズで求められているアクションについて、日々積極的に声掛けやフォローアップを実施しています。たとえおせっかいと思われるとしても、コミュニケーションを通じてしっかりフォローする姿勢を持ち続けることが重要だと考えています。

データ・アナリティクス入門

IT化でバックオフィス革命を達成するための3ステップ

なぜギャップを把握する? 問題解決のステップとして、What, Where, Why, Howは非常に重要であり、これらを順序に拘らず実施することが求められます。まず、問題として「あるべき姿」と「現状」とのギャップを自分自身でしっかりと把握することが必要です。このギャップを数字で表現することが大切であり、その表現によって関係者間で合意を取ることが肝要です。 未来志向でビジョンを描くには? 問題解決を進める際には、「あるべき姿」と「現状」のギャップだけでなく、「ありたい姿」と「現状」のギャップにも注目することが重要です。これにより、問題の根本的な解決だけでなく、会社の成長を見据えた将来のビジョンを描くことができます。 バックオフィスの改善ステップ バックオフィス部門の集約化やIT化を進めるためには、以下のステップを踏むことが効果的です。まず、「現在の課題」を明確にし、「あるべき姿」を具体的に設定します。さらに、会社の成長に向けた「ありたい姿」を描き出し、そのギャップを明確に捉えます。 具体的な手順としては、次の通りです。 1. 問題が何か(What)、そしてその問題がどこにあるか(Where)を明確にする。 2. 「現状」、「あるべき姿」、「ありたい姿」を部門ごとに分け、それぞれを数字(在籍数、残業時間、処理数など)で表現する。 3. 解決策としてどのような体制・ツール(ITシステム等)が必要かを、ヒト・モノ・カネの観点から明確にし、具体的に説明する(How)。 こうしたアプローチを取ることで、バックオフィス部門の課題を効果的に解決し、IT化や集約化をスムーズに進めることができるでしょう。

データ・アナリティクス入門

データ分析をDX推進の鍵にする方法

フレームワークをどう活用する? what-where-why-howのフレームワークで考えることが非常に印象に残りました。これを会社でよく言われるPDCAサイクルに当てはめて考えてみました。P&Cの部分はwhat-where-why-howに、D&Aの部分は施策と解決策の実行に相当します。 仮説思考の真価は? 特に仮説思考はwhere→why→howの部分に適用できると思います。仮説と結論をセットで考えることで、無秩序な分析を防ぎ、限られた時間と資源で施策を考える際に有効だと感じました。 更に、単なるデータ集計とデータ分析は異なるという点についても再認識しました。 データ分析をどう実践する? 私は現在、メーカーの物流子会社で働いており、様々なシステムから日々多くのデータが蓄積されています。しかし、DXを推進すると言いつつも事なかれ主義が根強く、なかなか進展しないのが現状です。今回学んだwhat-where-why-howの流れでデータを分析し、グラフ化して社内で共有することで、的を絞った改善策の検討に役立てることができると思います。 目標達成に向けた分析とは? 具体的には、何を達成したいのかを明確にし、日々蓄積されるデータから目的に合ったデータを選定して分析し、情報として活用します。その結果を「わかりやすく伝える」ことを念頭に置き、周囲に共有して活動に巻き込み、活動の方向性を決める役割を担いたいと考えています。

戦略思考入門

差別化とコスト削減の成功戦略

顧客価値をどう考えるべきか? 良い差別化のポイントには、顧客にとって価値があるかどうか、顧客視点の競合を意識したものであるか、実現可能性や持続可能性について検討したものであるかの三つがあります。さらに、VRIO分析を行うことで、経済価値、希少性、模倣困難性、組織に関する問いに答え、資源の有効性を評価できます。また、ポーターの三つの基本戦略に基づき、企業の戦略を「コストリーダーシップ」「差別化戦略」「集中戦略」に分けることができます。これにより、戦略の起案や競合の戦略把握に役立ちます。 自社の戦略をどう強化する? 自社はポーターの三つの戦略のうち、コストリーダーシップに位置しています。コストの削減に努めており、自前主義が功を奏し、生産から販売、配送に至るまでワンストップで提供しています。さらに、社内のシステムも自前で作っており、アウトソーシングによるコストを削減しています。特に配送の自前は他社には模倣しづらい領域であり、当社の特長と言えます。今後は差別化戦略をさらに取り入れることで、強みが増すのではないかと考えています。 同業他社との差異をどう見つける? 同業他社のビジネスについてもVRIO分析を実施していきたいと思います。これにより、自社の強みを改めて理解し、弱みを見つけ出せることで、新たなビジネスや戦略の糸口が見つかるのではないかと感じました。時間は限られていますが、実践してみたいと思います。

クリティカルシンキング入門

分解力で未来を切り拓く学び

分解の基本はどうする? 分解の仕方によって、物事の見え方や捉え方が変わることを理解しました。分解は最初から細かく行うのではなく、まず全体を定義し、広い視点で傾向を捉えることが重要です。その際、分解の切り口として「いつ、誰が、どのように」を意識すると探しやすくなります。また、分解にはMECE(漏れなくダブりなく)を意識することが求められ、層別、変数、プロセスの分解が考えられます。一度分解して終わらず、他の視点も探し続ける姿勢が大切です。 どんな視点で分解する? システム開発提案などで改善系の提案を行う場合には、操作時間や処理時間、問い合わせの状況、不具合の発生状況など、さまざまな視点で分解することが重要です。これにより、より費用対効果の高い提案が可能になります。これまでもデータ分析を行ってきましたが、自分の想定に偏ったデータ分解をしていたことに気づかされました。他の視点があるのか、偏りがないかを常に自問自答しながら、問題の本質を捉えたいと考えています。 来期提案で注目すべき点は? 来期の体制提案では、現行システムの課題を洗い出すことを目指しています。そのために、現行機能の操作性、問い合わせ、要望一覧をまとめ、来期で取り組むべき改修内容の有効性を示し、それに沿った体制を提案したいと考えています。MECEを意識したデータ分析を活用し、説得力のある提案を行えるように努めます。

クリティカルシンキング入門

視野を広げるための問いかけの力

分析時に問いかけの重要性とは? 分析の目的を「問いかけ」から始めることの重要性を学びました。具体的なテーマを最初に決めてしまうと視野を狭めてしまう可能性があります。そのため、「何のために?」と問いかけることからスタートし、具体化することが大切です。また、チームで物事を進める際には、ゴール(目的)を明確にしておくことで、本質から脱線することを防ぐ効果があると理解しました。この認識を忘れないように、何度も共有することを徹底したいと思います。 新規企画にどう役立てる? 新しいサイトやサービスの企画や改善の際にも、この方法が役立つと感じました。たとえば、上司から「このシステムを導入するために資料を作って会議をセットしておいて」と指示を受けることがあります。その際、イシューを明確にしておくことが効果的だと思いました。 効率的なミーティングの準備法は? これまで私は、新しいサイトやサービスを企画する際、「●●について」とテーマを限定してキックオフの資料を準備していました。今後は、事前に情報を分解し、目的を問いかけることでテーマを具体化した状態で会議に望もうと思いました。責任者からスピーディーな改善を求められることが多い中、これにより時間の節約にも期待が持てます。また、データ分析を用いて現状の数値をしっかり把握することで、改善後の効果測定も行いやすくなると感じました。

データ・アナリティクス入門

在庫の謎、仮説でスッキリ解決!

分析フレームはどう使う? 分析の実施に際して、講義ではプロセス、視点、アプローチという3つのカテゴリに分けたフレームワークが紹介され、シンプルなモデル化が印象的でした。仮説思考のプロセスは「目的の把握」「仮説の立案」「データ収集」「検証」の4段階に分かれており、分析に必要な視点として、インパクト、ギャップ、トレンド、ばらつき、パターンの5つが挙げられました。また、具体的なアプローチとしてグラフ、数字、数式の3つが提示された点も理解の助けになりました。 クライアント事例を深掘り? 現在、あるクライアントから依頼をいただいている基幹システムと倉庫管理システム間の在庫差異に関する分析支援に、本講座で学んだ内容が活かせると考えています。ロケーション、保管場所、品目、品目タイプ、システム、オペレーションなど、複数の要因が複雑に絡み合いながら在庫状況に時間的なずれを生じさせているため、講義の知識が問題解決の一助になるのではないかと思います。 差異分析の視点は? また、Q2で実施している活動において、差異分析のプロセスの意識づけに講義内容を活用できると感じました。オペレーション履歴の抽出や、過去3カ月分のデータを用いた分析の中で、ばらつきやパターンという視点が特に重要であると実感しています。そのため、今回学んだ相関関係を意識した分析手法が有効に働くと考えています。

データ・アナリティクス入門

プロセス分解で見つけたヒント

なぜ分解して考える? プロセスを分解して問題の本質に迫る手法について、非常に分かりやすい事例から学ぶことができました。特に、採用プロセスの一部である中途採用面談や、顧客への提案における在庫差異の問題解決に、このアプローチを活用できると感じています。また、ABテストにおいては、条件をできる限り同一とし、検証範囲を絞るための仮説設定が重要である点も再認識しました。 採用面談、何が問題? まず、中途採用面談に関しては、自身が関与する採用活動において、プロセスのどの部分で問題が発生しているのかを明確にするため、面談調整に要する日数と採用結果の情報を人事部から収集することを検討しています。この情報をもとに、面談調整に時間がかかる原因を特定し、改善策を提言することで、採用率の向上を図ることができると考えています。 在庫の差異、どう解決? 次に、顧客への提案、特にシステム間の在庫差異に関する課題解決では、既に現状の業務プロセス分析は実施していますが、課題が発生しているプロセスの粒度が細かすぎるため、より単純化した形で説明する必要性を感じました。問題となりうる箇所を明示した上で、システム改善または運用プロセスの変更のいずれかを提案し、顧客にとって最適な解決策を提示していく考えです。

デザイン思考入門

受講生が綴る成長と共感の物語

デザイン思考はどう変わる? デザイン思考は、当初は外見や部分的な要素に焦点が当てられていましたが、徐々に全体設計へのアプローチへと発展してきました。お客様への共感を軸とすることで、顧客にとって本質的な課題解決を目指す姿勢は、単に技術的に高度であるだけではなく、実際に役立つ製品やサービスへと結実するために不可欠です。 技術進歩と課題は何? また、AIの進化により、ITシステムの試作が容易になったため、全体プロセスの回しやすさは向上しています。しかしながら、細部の制御が難しい現状では、あと一歩の実現に大きな工数と時間が必要となるケースも見受けられます。加えて、顧客と製品やサービスの提供者はそれぞれ別の利害を持つため、どうしても緊張関係が生じるという課題があり、こうした点を含めた総合的な方法論の整備が望まれます。 試作と提案はどう進む? 今後は、ChatGPTなどを活用して顧客の発言から課題やソリューションを分析し、その結果を基にReplitで試作案を作成、実際に顧客に提示するという流れが実現できるのではないかと考えています。授業を通して、こうしたプロンプトの設計など、具体的な手法を確立していくことが目標です。

「時間 × システム」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right