仮説構築で何を優先すべき?



仮説構築のポイントについて学んだことは、以下の通りです。

まず、仮説構築では複数の仮説を出すことが重要です。3Cや4Pといったフレームワークを活用し、網羅性を持たせることが求められます。決め打ちにしない姿勢も大切です。

次に、仮説を絞り込むための基準としては、具体的なデータや根拠が必要です。たとえば、SNSのプロモーションが弱いと判断する場合、その根拠を明確にする必要があります。

どのデータを用いるべき?



データ取得や計測前には、指標の絞り込みが重要です。何を比較すれば仮説が立証されるのかを確認します。例えば、故障件数ではなく、1件あたりの対応時間を指標とすることが有効です。

また、比較対象のデータも集める必要があります。Aが正しいというだけでなく、BやCを否定するデータも必要です。これにより、より説得力が増します。

仮説検証の鍵とは?



仮説には「結論の仮説」と「問題解決の仮説」があり、それぞれの使い分けと違いを意識することが重要です。問題解決の仮説では、社内のシステム切り替えにおいて複数の製品候補の中から1つを選ぶ際、網羅性のある原因究明と問題箇所の特定が求められます。A製品が良いというデータだけでなく、他の製品(B, C)がダメというデータも揃えることで、Aの比較優位性を証明することができます。

フレームワーク選択の重要性



仮説検証のシミュレーションでは、まず仮説の洗い出しを行います。3Cや4Pのフレームワークが適用できるかどうかを検証し、適していない場合は他のフレームワークを検討します。

最後に、データ検証の洗い出しでは、取得可能なデータの確認と、どの指標が計測・取得すべきデータなのかを特定します。これにより、仮説の検証がスムーズに進むでしょう。

以上のポイントを踏まえて、仮説構築と検証のプロセスを実践していくことが大切だと感じました。
※上記の投稿は、受講生より許可を得て掲載しています。
help icon

ナノ単科とは?

what nano image
実践につながる基礎スキルを習得するカリキュラム
グロービス経営大学院 単科生制度の、さらにライトなプログラムが登場。
1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。

ナノ単科受講生の声

この記事と同じ科目を受講したナノ単科受講生のリアルな感想をご紹介します。
avatar
H.N
50代 女性
受講科目
データ・アナリティクス入門
モチベーションが上がる

勉強することを長らく忘れていましたが、
若い受講生の姿を拝見し、
一生勉強だなと感じさせられました

avatar
S.T
30代 男性 係長/主任
受講科目
データ・アナリティクス入門
実践につながる わかりやすい 仲間と学び合える

価格、期間、レベル、とにかくジャストサイズだったように思います。
初心者や我流の限界を感じている人にオススメですね。
異業種異職種の人と受講動機をシェアできたのがよくて、「みんな悩み同じなんだな」「自分だけじゃない」という安心と納得感がモチベーションになりました。

avatar
A.N
50代 女性
受講科目
データ・アナリティクス入門
実践につながる わかりやすい

グループワークがあることで、気づきが多い。オンライン講座はたくさんがあるが、受講生の考えなどを聞くことで理解が深る気がします。
3か月間、週1回であれば、なんとか頑張れるのみ魅力です。
勉強はし続けることも大事ですし、仕事にもすぐに実践できる内容が多いことも、受講してとてもよかったなと思っています。

「実践」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right