データ・アナリティクス入門

数値分析の極意を学び事業改善へ

分析とは何を指すのか? 目的を明確にしないと、意味のないただの計算・数値になってしまいます。「分析」とは「比較」であり、比較の条件をそろえることが大事です。分析は考察までがセットです。この点を理解することで、意味のある数値やグラフの種類を適切に判断できるようになると思いました。 データをどう活用する? 例えば、WEBサイトやSNSの効果測定では、数値が自動的に出てきますが、それをどう考察するかが重要です。また、アンケート結果の分析では、目的を整理してから項目や回答のさせ方を決めないと、分析できないデータや目的に合わないデータになってしまいます。 明確化の重要性 分析の目的・ゴールを明確化することを最重要視することが肝心です。目の前の数字の増減だけにとらわれず、分析手法やその後の考察までを意識してアンケート設計を行う必要があります。 学んだことをどう実践する? 業務上、数値分析をする機会が度々あるので、今後は学んだことを意識しながら分析手法や報告内容を改善していきたいと思います。

データ・アナリティクス入門

分析の楽しさ!戦略と挑戦の日々

各要素をどう捉える? 分析の肝は、漏れなくダブりなく各要素を洗い出し、比較することで見えてくる事象から仮説を立てる楽しさにあると実感しました。一方で、効率的で分かりやすいツールの習得がまだ十分でないため、その点を今後解消していきたいと考えています。 売上拡大はどう実現? まず、売上拡大のための各種施策の打ち出しが必要です。また、お客様の行動を分析することでアプローチ方法の見直しが求められます。現状の自社商品の強みや弱みを把握し、適正な人員配置や営業行動計画、業務プロセスの見直しを実施するためには、関係各所のリーダーと連携することが重要です。 育成と戦略の見直しは? さらに、スタッフ育成においては、早期に戦力となっていただくための教育制度の見直しを進め、会社の方針や営業目標を浸透させる努力が必要です。加えて、マーケティング施策の見直しでは、離脱要因を特定し改善を図るとともに、他社の事例研究も欠かせません。最後に、営業戦略の再検討を行い、何が効果的であるのかを見直すことが求められます。

データ・アナリティクス入門

課題発見で変わる未来への一歩

どう始めるべき? 分析を始める前に、まずは問題や課題、そして分析の目的を明確にすることが重要です。'What'、'Where'、'why'、'how'というステップを意識しながら、単に分析を進めるのではなく、実務にどのように反映させるかを考慮する姿勢が求められます。 何を優先すべき? また、やみくもに分析を行うのではなく、分析はあくまで課題解決の手段であることを常に意識してください。業務上の課題を把握し、解決すべき内容ごとに優先順位を整理することが基本となります。このプロセスにおいても、'What'、'Where'、'why'、'how'の各ステップを丁寧に進めることが大切です。 どこを改善する? 具体的な取り組みとしては、まず業務における課題のうち、分析によって解決が期待できるものを把握し、特に成果に影響を与える重要な課題を抽出します。次に、具体的なデータをシンプルに比較することで、改善のポイントを明確にし、一つでも実践可能な改善施策を実務に反映させることが成果につながります。

アカウンティング入門

数字で読み解く経営戦略

全体像はどう理解? アカウンティング入門を受講することで、これまで漠然としていた数字の意味やその構成が理解できるようになりました。特に、個々の数字ばかりを見ていた自分にとって、P/L全体を俯瞰する大切さを実感する機会となりました。 フレームワークはどう使う? さらに、自社の事業活動を適切なフレームワークに当てはめ、数字全体を読み解く意識を持つようになりました。自社と競合を比較する際には、顧客や提供価値を念頭に置くことが重要であり、P/LやB/Sから各種課題を論理的に整理することができるようになりました。原価高騰による減益要因や棚卸資産の増加など、具体的な経営課題に対しても効果的に対応できると感じています。 学びをどう伝える? この学びを生かし、自部門のミーティングではまず自社の顧客・提供価値を重視する意義を伝え、続いてP/LやB/Sの読み解き方を共に学んでいく方針です。部下にも今の経営課題を数字を通して理解し、業務の効率化に結びつけられるようサポートしていきたいと考えています。

アカウンティング入門

アカウンティングで業務の未来を切り拓く

どうして知識を深める? アカウンティングの知識を習得することで、現在の業務をより高い視点から俯瞰できるようになると考えています。購買部門で働いているため、取引先の選定やコスト決定を担当しています。今後は提案する取引先の財務状況を定量的に分析し、それに基づいて正確な業務提案を行い、上司を説得していくことを目指します。顧客に提供する価値を忘れずに、6週間の講義を継続していきたいです。 どうやって決算を分析する? 担当している取引先の決算情報を正しく把握し、これをもとに将来のサプライヤーやコスト決定の判断材料として活用したいと考えています。また、競合他社の決算状況との比較を通じて、取引先の強みや弱みを整理し、事業の方向性提案につなげることを目指します。 どう学習内容を整理する? 各講義のあと、自社や関係する取引先の決算情報を比較・照合することで、学習内容の理解を深めたいと思っています。特に、自身と関連のある企業を分析対象にすることで、関心を持ち理解度を高めることができると考えます。

データ・アナリティクス入門

業務効率化のカギはデータ分析と説得力!

日々の意思決定は? 業務で日常的に行っている意思決定も、「分析」の結果であるということに気づいた。また、より早く、より良い意思決定を行うためには、「データ」の性質を理解し、効果的な比較を行い、他者が納得しやすいようにグラフ等を使用する必要があることを学んだ。 なぜ運用を変えるのか? 業務効率化を進めるため、新しい運用を推進することが日常的にある。その際、従来のやり方を変えたくないメンバーも多いが、以下のプロセスを踏むことで業務効率化をスムーズに進められるようになると思う。 まず、なぜ運用を変更した方がいいのかをしっかり分析する。そして、反対メンバーが理解し納得しやすいように、グラフ等も活用しながら分析結果を提示する。 学んだ内容をどう活かす? まずはWEEK6までの学習の中で、「分析手法」「データの性質」「それぞれのグラフの特徴」をしっかり自分の身につける。そして、WEEK6までで学んだ内容をすぐに実践に取り入れ、上司やメンバーを巻き込み、業務効率化を達成していく。

データ・アナリティクス入門

目的再確認で磨く鋭い分析

計画の反省点は? これまで計画的な勉強をせずに分析業務を進めてきましたが、これまでの経験を体系的に整理できたと感じています。 比較検討する意味は? 特に印象に残ったのは、目的と比較対象を再確認することで、分析の内容がより鋭くなった点です。どの手法や見せ方を選ぶかは、結論を導き出しほかの人に共有する上で重要であり、データに応じた適切な手法の選択が求められます。 共有の大切さは? 今後は、何を目指し何と比較するのかを具体的かつ明確にし、チーム内でしっかりと共有することを徹底していきたいと考えています。これにより、分析結果がより精度の高い仮説検証に繋がり、プロセス全体の質が向上すると思います。 挑戦の意義は? 具体的には、フォローアップや分析の都度、目的を直接再確認すること、目指すべきものと比較対象をはっきりさせた上で最初にチームと確認し合うプロセスを重視しています。また、習得した分析手法を活かし、普段あまり使用しなかった方法にも意識的に挑戦するよう心掛けています。

データ・アナリティクス入門

データ分析で発見する成功のカギ

比較に意味があるのは? 分析は比較であることを理解しました。つまり、比較に意味がない数値を比べることは無意味だと感じました。 失敗例から学ぶ分析法 データ同士の要素を揃えることも重要だと考えます。これまで成功例をいくつか分析して共通の要素を探したことがありますが、振り返ってみると、失敗例でも同じ分析をして失敗しているケースが多々あったのではないかと思います。それは、本当の成功要因とは異なると思います。 成功要因の鍵は何か? 広告などのクリエイティブにおける結果の分析で、特に比較要素が多い動画クリエイティブでは、成功事例と失敗事例を踏まえて、本当にキーとなるポイントを発見することができれば、大きな成果につながると感じます。 具体的目標に向けて行動 3月末までに業務の特定の箇所を学んだデータ分析を用いて数値を改善させる目標を立てました。毎週の授業の中で、具体的に自分の業務をイメージしつつ、会社の中で自分がどう行動するかを考えながら学習に取り組んでいます。

データ・アナリティクス入門

数字が紡ぐ多角的な気づき

計算方法はどう違う? 他者による分析データでは幾何平均や標準偏差に触れる機会はありましたが、以前は計算式に苦手意識を感じていました。今回、単純平均や加重平均と併せて用いることで、データのばらつきや分布が視覚的に理解しやすいことを実感しました。また、分析結果同士の比較において要素が細分化され、読み解く幅が広がることも理解できました。普段目にするデータの背後には巧妙な仕組みが潜んでいることを再確認し、背景にある意図をより慎重に読み取ろうという意識が芽生えました。 部署ごとの傾向は? 担当しているダイバーシティ推進の取り組みでは、アンケート結果が全社的にポジティブな回答に偏る傾向が見受けられました。しかしながら、ネガティブな回答は特定の部署に偏っている可能性もあります。回答者の部署や性別などの属性に注目することで、異なる視点からの分析が可能になると感じました。こうした多角的な検証を通じ、部署ごとの業務特性やジェンダーバイアスなどの要因が明らかになることが期待されます。

データ・アナリティクス入門

数字が語る学びの秘話

代表値の使い方は? 代表値の計算方法として、単純平均、加重平均、幾何平均、中央値のアプローチがあることを再確認しました。日常の業務では状況に応じて使い分けているものの、特に幾何平均は実際に計算する経験がなく、大変勉強になりました。また、データのばらつきを捉えるための標準偏差を使った比較も初めて試み、今後の分析に役立てたいと感じました。 分析結果はどう活かす? 研修成績やサーベイ結果の推移やばらつきを把握し、傾向や特徴を見出すために、今回学んだ代表値の計算方法やビジュアライゼーションが非常に有効だと考えます。まずは、データを確認する前に、点数が上昇している場合と下降している場合の仮説を立て、その上で属性ごとに単純平均を用いて比較を行います。さらに、人事制度などとの関連付けを行う際には、特定の部署の比重を増やす加重平均や、前々回分のデータを反映した幾何平均を導入することで、目的に合った多角的なアプローチを実現し、仮説の検証や次の分析ステップへとつなげていきます。

データ・アナリティクス入門

比較と検証で切り拓く未来

分析の見極めポイントは? Week1を振り返って、「分析は比較なり」という言葉が強く印象に残りました。正確な分析を行うために守るべき要点を改めて認識するとともに、仮説と検証を繰り返すことの重要さを実感しました。 業務での分析とは? 実際の業務シーンでは、以下のような場面でデータ分析の手法を活用しています。病院のデジタル推進におけるデータ分析、サーバ性能やトラブル発生時の問題解決、新サービス導入時のサーバ負荷試験に関する見解、また、LINEや無呼吸ラボ、近隣検索、PCPへのファネル分析、アクセス数やページビューの分析など、さまざまな事例に取り組んでいます。 分析習慣の秘訣は? 日々の業務においては、勘や経験則だけに頼ることなく、データ分析に基づいた意思決定を行う習慣を身につけることが重要だと感じています。問題が発生した際には、What、Where、Why、Howの視点で現状を整理し、的確な対策を講じるために、仮説と検証を繰り返す姿勢を大切にしていきたいです。

アカウンティング入門

カフェで学ぶ経営のヒミツ

カフェ実例は何を示す? カフェの実例を通じて、ビジネスモデル、すなわち顧客への価値提供の違いが損益計算書(P/L)にどのように現れるかを学びました。売上に占める売上原価の比率や販管費などを分析することで、それぞれのビジネスの利益構造が明らかになると感じています。 印象は何だった? 具体的には、以下の点が印象に残りました。 ① 来期の事業計画を策定する際に、本学びを活かせると考えています。 ② 売上原価の内訳や利益の構成比率を確認することで、自社の利益を生み出す仕組みや提供している価値を再認識し、改善すべきポイントを検討する材料になると思います。 ③ 自社だけでなく、同業他社の損益計算書を比較して各社の背景や戦略、ストーリーを考察することは、経営戦略を見直す上で非常に有益です。 今後の活かし方は? なお、今回もWEEK02と同様に、損益計算書を中心とした分析方法を業務にも応用できる内容となっており、具体的な行動計画策定の参考になると感じました。

「業務 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right