データ・アナリティクス入門

仮説で切り拓く新たな発見の道

仮説は何のために? 仮説を立てることで、問題意識が芽生え、物事に対する検証マインドが育まれます。時間軸によって仮説の内容は変化しますが、頻繁に検討することで説得力が増し、スピードや行動の精度が向上します。そのため、仮説を立てた上で実際に行動していくことが重要です。 なぜ結果に違いが? 経理業務は過去のデータを整理する作業ですが、整理後の結果を見て、なぜこのような結果になったのかを考える際に仮説を活用できます。仮説を立てることで、結果が正しい理由があるのか、それとも処理に誤りがあったのかを、まずは検証することが可能です。 何が原因と判断? 具体的には、予算との比較や前年度との比較を行うことで、突出した変化を確認します。もし大きな変化が見られない場合は問題がなかったと判断できますが、何かしらの極端な変動があった場合には、その原因を仮説に基づいて検証することで、より正確な分析が行えるようになります。

データ・アナリティクス入門

目指す姿とのギャップを分析

手法活用はどうする? 5W1Hや層別分解の手法は知識として持っていましたが、実際の業務では目の前の課題にとらわれやすいと感じています。今後は、これらの手法を意識的に取り入れ、より体系的な分析を実施したいと思います。 理想との違いは何? また、分析を行う際には現状とあるべき姿とのマイナス差に注目することが多かったことから、目指す姿とのギャップに関する分析が不足していると感じました。今後は、理想との比較も含め、より実践的な分析に活かしていきたいと考えています。 計測軸は見直すべき? 各部門の工数実績を分析する中で、計測軸をMECEの観点から整備するためにその他の軸も設けています。しかし、全体の一定割合が「その他」に分類されていることから、課題の見落としが発生する可能性があります。このため、計測軸の見直しを行うとともに、現状のあるべき姿との比較だけでなく、目指す姿に対する分析も加えて実施していく所存です。

データ・アナリティクス入門

平均の壁を越える、新指標の挑戦

課題はなぜ難しかった? 前週に比べ、今回の課題は難易度が上がっており、理解するまでにやや時間がかかりました。これまでは平均値を中心に分析していましたが、今回は単純平均、加重平均、幾何平均、中央値、標準偏差といった各指標を活用することで、より正確な分析に結びつけることができると感じました。 営業データの見直しはどうする? 業務では営業関連の数字を扱う機会が多いため、従来は一律の平均値を用いて前年度との比較を行っていました。しかし、さまざまな方法を試すことで、異なる角度からデータを分析できるのではないかという可能性を感じています。 新手法の試行錯誤は必要? これからは、どのデータにどの指標を適用するかを十分に検討した上で、目的に合わせたデータの取得と分析に取り組んでいきたいと思います。新しい手法に慣れるまで試行錯誤はあるかもしれませんが、自分にとっての最適な分析方法を見つけ出すことを目指します。

データ・アナリティクス入門

実践で磨く仮説力の秘密

実務分析の感想は? 今回の演習では、多くのデータや豊富な情報を基に、実務に即した分析を体験できました。仮説を立てる重要性を実感し、検証の目的を明確にすることの大切さを再確認しました。一方で、考えやすい仮説もあれば、内容によっては仮説の設定に苦慮する面もありました。今後は経験を積み、自然に仮説を立てられるようになることを目指したいと思います。 比較で何が見える? また、最初の講義で学んだ「分析は比較である」という考え方を再認識しました。検証項目をしっかりと揃えることが、正確な判断に繋がると感じました。自分の業務では自らデータを取得する機会が少ないため、実際に活かせるシーンは限られるかもしれませんが、常に比較項目を揃える意識を持って仕事に取り組みたいと考えています。今回の内容は情報量が多く、フレームワークの理解が十分とは言えなかったため、書籍の読解や講義の再視聴などで定着を図り、理解を深めたいと思います。

マーケティング入門

営業新発想!マーケ戦略の秘密

自己紹介感覚はどう? マーケティングは難しく考えすぎず、自己紹介のような感覚で進めることが大切だと学びました。相手が何を求めているかを察知し、そのニーズに合わせた提案(ソリューション)を行うことで物事がうまく進むと感じています。また、このマーケティングの発想は、営業やその他の業務にも応用できると実感しました。 販売と企画の両面は? 私は営業に携わっているため、新商品のセールスにおいて、現場でどのように販売するかだけでなく、企画段階でのプロセスを意識することがより効果的な営業につながると思います。自社で取り組む意義や、どのターゲットに対してどのようなプロセスで販売するかを社内で検討することで、より広い視野で新商品を捉えることができると考えています。 マーケティング比較は? また、新規事業において、マーケティングの視点が取り入れられているものとそうでないものとを比較することに興味を持ちました。

データ・アナリティクス入門

分析の核心に迫る!比較活用の極意

比較の意義は? 分析の核心は、比較にあります。比較を行う際には、対象の選定や条件を統一することが、意義深い分析につながります。また、分析の出発点として、目的や仮説の定義が欠かせません。これらは、できるだけ明文化しておくことが理想的です。 データの見せ方は? さらに、分析結果を伝えるには、グラフやパーセンテージなどで適切にビジュアライズすることが重要です。例えば、自社サービスと競合他社サービスの比較では、自社に有利な形でデータを提示するのが一般的です。また、サービス導入前後の状態を比較し、業務時間の短縮やコスト削減といった導入効果を、定量的に示すことが求められます。 リスクをどう定量? ある程度の定量化を行った提案は既に実施していますが、定量化が難しいと感じられるセキュリティリスクやコンプライアンスリスクの削減についても、納得感のある定量的データとして提示する工夫をさらに進めたいと考えています。

アカウンティング入門

ビジネスモデル分析で見つけた新たな視点

ビジネスモデルの理解を深めるには? ビジネスモデルによって提供される価値が異なるため、どこに費用がかかり、どのように利益を生み出すかを理解することができました。他社のP/Lを見比べることで、その特徴や費用のかけ方がわかり、彼らの戦略を想像する手がかりになると感じました。 自社の毎月のP/Lをどう読み解く? まず、自社の状況や自分が関わる事業の状態を、毎月のP/Lをしっかりと読み込むことで理解していきたいと思います。そして、単に計画と実績を把握するだけでなく、なぜそのような結果になったのかを検証し、今後の対策に何が必要かを自分の課題として業務に活かしたいと考えています。 直近と過去のP/Lをどう比較する? さらに、直近のP/Lと過去のP/Lを比較して、どの数字がどのように変化しているのかを分析し、現在の自部門の問題点や必要な対策を明確にして、自分のアクションプランに取り入れていくつもりです。

データ・アナリティクス入門

公平な比較で見つける最適解

打ち手はどう選ぶ? 今週は、課題解決のプロセスにおける打ち手、つまりどう取り組むかという部分に焦点を当てました。その中で、2つの案を比較して検証する手法としてA/Bテストについて学んだのが印象に残りました。A/Bテストは、対象となる条件をそろえることで公平に比較できるため、効果的な意思決定に役立つ方法です。 調査パターンはどう確かめる? 実際の業務ではネット販売が少ないため、A/Bテストそのものは行っていませんが、製品の発売前には複数のパターンを設定して比較検討する調査を実施しています。たとえば、味のバリエーションや商品名・コンセプトなど、さまざまな要素について、それぞれのパターンを複数同時に調査することで、目的にかなった最適な方向性を見極めています。今回の学びを通じて、調査目的を明確にする重要性を改めて認識し、今後は目的に沿ったパターン設定をより一層意識して取り組んでいきたいと考えています。

データ・アナリティクス入門

ABテストで磨く実践力

ABテストはなぜ重要? ABテストを正しく実施するためには、まず目的や仮説を明確に定め、比較対象となる条件をしっかり整えることが重要だと改めて学びました。 問題解決はどう進む? また、問題解決のプロセスを順序立てて取り組むことで、何が問題であるのか、どのような仮説が考えられるのか、そしてどのような解決方法を選ぶべきかを体系的に理解できました。マーケティングチームでの売上進捗に関する課題の特定や、適切な打ち手の選択、さらに広告の効果検証など、様々な場面でこのアプローチを活用できると感じています。 多角検討はどうする? さらに、複数の切り口で課題に接近し、必要なデータの洗い出しや抽出方法、そして解決策の多角的な検討を進める過程で、チームメンバーと協力しながら取り組む重要性を再認識しました。今後は、業務の中で意識的にアウトプットの機会を増やし、実践的な成果に結びつけていきたいと考えています。

データ・アナリティクス入門

シンプルな挑戦、未来への一歩

A/Bテストの魅力は? A/Bテストが注目される理由は、そのシンプルさにあります。限られた要素を2つ以上のパターンで比較することで、運用や判断がしやすくなります。また、テスト用の画像やテキストを用意するだけで低コスト、少ない工数で実施できるため、実験のハードルが低いのも魅力です。さらに、いきなり新しい案を採用する場合と異なり、段階的な改善によりリスクを最小限に抑えながら効果を測定できる点も大きなメリットです。 業務問題の解決策は? 日々の業務において発生する問題に対しては、「What」(問題の明確化)、「Where」(問題箇所の特定)、「Why」(原因の分析)、「How」(解決策の検討)というステップを意識し、効率的に対処しています。特に、問題の本質を捉えるために業務プロセスを細かく分解するアプローチを採用しており、複数の解決策を洗い出し、その根拠を基に最適な方法を選択するよう努めています。

データ・アナリティクス入門

データのバイアスに立ち向かう新視点

生存者バイアスのリスクとは? 「生存者バイアス」は、分析を主とする仕事に携わる人でも陥りやすい問題であると実感しました。データの扱い方だけでなく、分析対象の選び方についてもバイアスにとらわれず、ニュートラルに進めることが、自分の課題だと気付くことができました。 目的を明確にする重要性 BPOとして業務に携わっていると、データの使用目的が特に重要である場面が増えると感じています。以前の「マーケティング」という大義のもとでは、目的から外れることは少なかったのですが、目的を明確にすることが、業務全体でますます重要となりそうです。 データの純粋な観察方法 今回の講義を通して、データを純粋に観察する習慣を付け、仮説を立てることを重視し、比較対象が正しいかの確認を怠らないようにしたいと考えています。業務でバイアスの怖さを感じているため、事前の確認によって、バイアスの回避を心掛けたいと思います。

データ・アナリティクス入門

分析の裏側が開く未来への扉

なぜ生存者バイアスが起こるの? 思い返すと、分析に取り組む際に生存者バイアスの影響を受けていることがあったと感じています。既存の情報に頼るだけではなく、分析の目的や対象をしっかり整理することが、正確な分析と信頼できる情報提供につながると実感しました。 データの見方はどう? 現在の業務では、既存のデータをまとめて数字や報告資料にすることが主ですが、そのデータから得られる考察や予測も盛り込みたいと考えています。さらに、現状のデータだけに頼らず、より良い分析のために不足している情報や、精度を高めるためのデータ収集方法についても検討する必要があると思っています。 どう全体を俯瞰する? また、前月の稼働状況を報告する際、これまで前月と先々月の比較に終始していましたが、今後は全体を俯瞰する視点と詳細に注目する視点の両方を取り入れ、将来の予測や考察も盛り込んだ報告ができればと考えています。

「業務 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right