マーケティング入門

顧客視点での革新:実践で得たフレームワークの力

顧客目線を忘れないためには? 顧客目線であることは、企業活動として当然のことであると思えますが、競合を意識するあまり、顧客ニーズを無視してしまうことがしばしばあります。そのため、適正なフレームワークの使い方を学び、常に高い視点で物事を捉える術を養いたいと考えています。 顧客との対話が生む成果とは? 自身の取り扱う製品が顧客にとってどのようなベネフィットがあるのか、競合品との差別化が顧客ニーズを満たしているのかを検証するために、実際に顧客と対話を重ねます。また、メッセージが顧客にどれだけ響いているのかも再確認します。 イノベーション課題を解決するには? イノベーションの普及要件として比較優位、適合性、わかりやすさ、試用可能性、可視性の観点で自社の製品を考えてみると、比較優位と試用可能性、可視性はあるが、わかりやすさと適合性が課題であると認識しました。これらの課題をどう解決するかを検討する必要があります。

クリティカルシンキング入門

3つの視点が導く本質探求

視点のバランスは合ってる? 「3つの視」を意識することで、これまで自分の視点、役職に基づく視座、そして所属部署の視野にとらわれていたことに気付きました。このままでは、問題の範囲や解決すべき課題の本質にたどり着けないと感じています。 利益率差の原因は? 現在の直面する課題は増収減益です。その一因として、売価設定や発注フローが個人に依存しており、同じ商品でも担当者によって利益率に差が生じる状況があります。各立場からこの問題の本質を捉え、改善へと結びつける取り組みが求められています。 ボトルネックはどこ? まず、会社全体のフローチャートを作成し、ボトルネックとなっている箇所を明らかにします。次に、各部署ごとにフローチャートを作成し、部署単位の課題を洗い出すことが重要です。さらに、「なぜ?」という問いを繰り返し、深く掘り下げることで、組織全体にまたがる問題の本質に迫ることができると確信しています。

マーケティング入門

新たな付加価値に挑む体験価値づくり

商品届くまでどう感じる? 商品が届くまでの過程や、実際に手元に届いた後、さらには食べた後に至るまで、多様な場面でわくわくや楽しさを提供する取り組みにより、他社と差別化している事例を見ました。このようなアプローチにより、単なる「食べる」というシーンだけでなく、もっと広い視点で商品を捉える必要があると感じました。 売る前後はどう感じる? これからは、一つの商品を売る前から売った後まで、広い視点で考え、商品づくりに活かしていきたいと思います。特にお客様が商品を食べるとき、どのようなシーンでどのような気持ちになるのかを意識し、体験価値を付加価値として商品に込められるようにしたいです。 新たな価値って何? これまで「体験価値」を意識して商品づくりを考えたことがありませんでしたが、これからは商品設計のフローに積極的に取り入れ、新たな付加価値を持つ商品を作れるよう努めていきたいと考えています。

データ・アナリティクス入門

多角的視点で広がる戦略の可能性

多角的視点は有効か? フレームワークの各視点を取り入れることで、仮説の幅を広げることができるとの示唆が非常に印象に残りました。たとえば、問題解決の4つのステップや、事業戦略の分析で利用される3C、サービス検討の4Pといった多角的視点を活用することで、より網羅的な分析が可能になります。 仮説の見直しは必要? 一方で、これまでキャンペーンの仮説を立てる際には、十分な視点を持たずに取り組んでいた自分に気付かされました。今後は、複数のフレームワークを意識的に取り入れ、仮説同士に網羅性を持たせることを心がけたいと思います。 継続検証で進化できる? また、複数の仮説を立て、継続的に検証を繰り返すことで、ABテストにおいて有意な差を見出せると期待しています。自分が企画するキャンペーンの成功に向けて、どのフレームワークが活用できるかを検討することが、今後の課題となるでしょう。

データ・アナリティクス入門

数字が語る学びの軌跡

なぜ統計手法を重視? 平均値だけでは数値のばらつきを捉えきれないと実感しました。仮説を立てる際、標準偏差や中央値など多様な統計手法を併用することが大切だと改めて感じます。また、データをビジュアル化することで仮説の精度が向上し、分析のアプローチ自体も変わり得る点が印象的でした。 どう評価を改善? 今回のコンテンツ運用アンケートでは、これまで尖った意見や単一の数値に頼った評価に偏っていた部分を改善するヒントを得ました。今後は、仮説を明確に立てた上で、比較や傾向を意識した深いデータ分析を心がけていきたいと思います。 整理で何が見える? さらに、既に収集しているアンケートデータの整理を実施し、情報の過不足を確認する予定です。初めてのデータビジュアル化にも挑戦し、その結果は次回以降の運用改善のための知見として、適切な知識管理ツールで整理していきます。

データ・アナリティクス入門

比較と仮説でつくる現場改善の秘訣

目的と仮説の効果は? 今回学んだ「目的を持った比較や仮説に基づく分析」は、土木現場における工期短縮、コスト管理、安全対策の見直しに大いに役立つと感じています。たとえば、過去の類似現場と比較して資材使用量や作業時間に差が見られた場合、その背景を詳しく分析することで無駄や非効率を特定し、具体的な改善策を立てることが可能です。 記録と検証の効果は? まずは、各現場の作業時間、コスト、事故件数などのデータを日常的に記録・整理し、月単位で過去の現場と比較する習慣を身につけたいと考えています。特に大きな差が見られる項目については、「なぜこのような結果になったのか?」という仮説を立て、関係者と意見を交わしながら原因を徹底的に究明し、改善策を現場に反映させていきます。小さな気づきも見逃さず、分析を日常業務に取り入れていくことを意識して行動していきたいと思います。

データ・アナリティクス入門

数字で解く最適ログイン戦略

視覚化はなぜ大事? 数字に集約し可視化することの重要性を改めて認識しました。代表値と分布に注目し、平均値や標準偏差の概念を意識することはもちろん、場合によっては単純平均ではなく適切な重みづけを行う必要があることも理解しました。 どうユーザー呼び込む? ログイン率向上のためには、プッシュ通知を活用したユーザー誘導施策が有効だと考えています。具体的には、アプリのログイン時間帯とユーザーの年代を比較し、どの時間帯にプッシュ通知を設定するのが適切かを検討していきたいと思います。 データは見えていますか? まずは、アナリティクスで必要なデータが可視化できているか、ログイン時間帯と紐づくユーザーの年代ごとのデータが抽出できるかを確認します。その上で、データの分散状況を把握し、最も効果が高いと思われる時間帯を優先して施策の検討を進める方針です。

データ・アナリティクス入門

標準偏差で見えるデータの魔法

標準偏差ってどう理解? バラツキを示す標準偏差について、普段利用する機会が少ないためか、初めて触れる際にはとっつきにくい印象を持ちました。学校での成績に用いられる偏差値とは異なるものなので、具体的な事例に基づいて何度も実際に使ってみることが重要だと感じます。 代表値とバラツキの違いは? 一方、単純平均、加重平均、中央値といった代表値は、日常的に利用しているため理解に苦労することはありません。しかし、バラツキに関してはこれまであまり注目してこなかったため、データの特徴把握のためにも積極的にビジュアル化し、標準偏差を意識して利用したいと思います。 どう実践に活かす? 今回学んだ内容を実践に取り入れる際、代表値だけでなく、標準偏差がどのような場面で効果的に使えるのかを具体的に考えながら業務に活かしていきたいです。

マーケティング入門

効率だけじゃない、心の体験

感情価値を追求する理由は? 昨今の市場環境では、単に機能的価値を提供するだけでは顧客を満足させることが難しくなっています。顧客満足を実現し、真の差別化を図るためには、「体験」という情緒的価値の追求が欠かせません。 業務効率と情緒的価値は? 私の業務は、効率化や業務圧縮を目的としたツールやシステムの提供が中心ですが、その先のクライアントに対して情緒的価値を届ける意識を持つことが重要です。 多様なニーズに応えるには? また、社内の複数のステークホルダーを顧客として捉え、日々の業務依頼を通してそれぞれのニーズや課題に応えることを心がけています。 体験で業務改革は? BPOやBPR業務においては、顧客に「楽になった」という体験を提供することが本来の目的であることを忘れず、今後も業務に取り組んでいきます。

「意識 × 差」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right