クリティカルシンキング入門

データが導く採用成功法則

いつデータは成果に? 十分なデータを蓄積することが、正確な現状把握と適切な問いの設定につながるという点が非常に印象的でした。日々あらゆるデータを収集し、いつ何に対して答えを出すべきかを意識することが問題解決の基本であると再認識しました。 ROI考慮の意義は? また、解決策を検討する際には、ただ増やすのではなく費用対効果(ROI)も十分に考慮すべきだという点も学びました。特定の業務を増やすことがオペレーションコストの増加や問題の複雑化につながることがあるため、必要に応じて削減する視点も取り入れることが大切だと感じます。さまざまな角度から分析することで、より有効な対策を講じる可能性が広がるとも思います。 採用戦略の真髄は? 私の会社では現在、採用活動の強化に取り組んでおります。今回学んだ内容は、採用数の増加に向けた戦略に役立つと感じました。例えば、時期別の応募者数を分析し、各流入経路の割合からボトルネックを明確にすることで、仮説に基づいた具体的な対策を講じ、採用数の向上を目指したいと考えています。 PDCAで何が変わる? この学びを整理した上で、抽象度の高い問題解決が求められる業務にも積極的に挑戦していきたいです。PDCAサイクルを何度も回すことで、立てる問いの質が向上し、より良い成果につながると信じています。

戦略思考入門

フレームワークで見える業務改善の秘訣

関係者間のゴール共有は必要か? ひとつの課題に対しても、関係者それぞれがスタートの時点でゴールやプロセスを共有しておくことによって、方向性を見失わずに戦略を立案できます。しかし、経験値が高い人や声が大きい人に引っ張られることはよくあります。そのため、フレームワークを使って課題や情報を分析し、優先順位や重要度を整理することが重要だと思いました。 業務でフレームワークは活用できてる? 現在の業務では、中期計画を策定する際にSWOT分析やPEST分析を使用していますが、実際に課題を十分に理解し洗い出せているか自信がありません。上司の出す結果をそのまま受け止める傾向があります。今回の学習で得た具体的な事例を参考に、業務に落とし込んでみたいです。特にカスタマーサービスにおいては、商品や営業に直接関与していないため、サービス業におけるフレームワークの効果的な活用法について考えていきたいです。 業界分析は計画にどう結びつく? 業界の分析や自社の強み・弱みを踏まえて、優先的に強化すべき領域や必要な対応を整理し、進めてみます。既存の計画についてもフレームワークを適用し、具体的な改善点を見つけ出し、現在の計画にどのように結びつくかを確認して、理解を深めていきたいと思います。また、本講座を通じて他の業界の視点を学び、自分の視野を広げたいと考えています。

データ・アナリティクス入門

問題解決への新しいアプローチを発見

問題解決の第一歩はどこ? 問題解決の4つのプロセスを学びました。起きたことをwhat・where・why・howに分けて考えると、普段ではwhereやwhyについては何となく意識しているものの、その「何となく」から思いつきでhowに至ってしまうことが多いと感じました。whatについてはほとんど考えられていないように思います。また、現状とあるべき姿のギャップを言葉にしようとしても、うまく出てこないことに気づかされました。これは自分がいかに漠然とした考えで問題に向き合っていたかの証拠だと感じました。 定量的分析を習慣化すべき? 目の前のことに一喜一憂せず、日々の問題には定量的な分析を行うことを習慣づけたいと思います。たとえば、キャンペーンの商品分析やチームメンバーの業務量の適正化なども、定量的に分解して考えると有効です。私たちの基本業務である当事者トラブルの解決にも、この方法が応用できるかもしれません。 ギャップをどう埋める? 最初に取り組むべきは、現状とあるべき姿、またはありたい姿が個々人で漠然としてまとまっていない点の改善です。そのギャップを埋めることが大切です。問題解決の話し合いの場ではまずwhatを意識し、周囲との合意を図ることが重要です。ここを丁寧に行った後に、物事の分解・整理を学んだ通りに進めていきたいと思います。

データ・アナリティクス入門

数値と論理で見える理想の未来

どの方法で解決? 問題解決には大きく2つのアプローチがあると感じています。1つは、あるべき姿と現状のギャップを埋め、正しい状況に戻すための方法です。もう1つは、未来に向けたありたい姿と現状のギャップを解消し、望む状態に到達するための方法です。どちらの場合も、目指す状態と現状を定量的に示すことが非常に重要です。 分析手法は何? そのため、ロジックツリーやMECEといった分析手法が有効だと考えています。これらのツールを使うことで、問題やデータを細かく分解し、整理された形で把握することが可能になります。 顧客データ整理はどう進む? 具体的には、現在保有している顧客データに含まれる情報を、国や契約の条件などの観点から整理する必要があります。これまで「顧客データ」とひとまとめにされていた部分を、ロジックツリーを用いて項目ごとに分解し、各顧客についてどのような情報が含まれているのかを明確にすることが求められます。また、業務における理想の状態と現状のギャップについても、数値などの定量的な指標を用いて示すことが大切だと感じました。 手法活用の可能性は? このように、定量的な情報の整理と、体系的な分析手法の活用が、問題解決を実現する上で不可欠であると再認識しました。今後も、これらの手法を業務の改善に積極的に取り入れていきたいと思います。

クリティカルシンキング入門

データの切り口に迷ったら実践する方法

データ分析の切り口選びで何が見える? データの分け方によっては、見えてくる結果が異なることがあります。例えば、分解する切り口を誤ると、真の原因が発見できなくなることがあります。このとき、分解する切り口は「層別分解」「変数分解」「プロセス分解」の3つが有用です。これらの手法に慣れることが重要なので、自分で考えながら手を動かすことが大切です。 真の原因を探る鍵はどこに? 問題解決において真の原因を探る際には、データ分析を行いますが、その際には分解の切り口が誤っていないかどうかを確認する必要があります。また、お客様へのヒアリングの中でMECEおよび5W1Hを意識することで、真の原因や現状を把握する際に役立ちます。 問題解決にMECEはどう活用する? 問題の特定と分析において、問題を構成する要素を重複なく漏れなく分解することで全体像を把握しやすくなり、また問題の原因を特定する際に全ての可能性を考慮して整理することができます。業務プロセスの改善では、業務フローをMECEに分解することで効率化の余地を明確にします。データ分析とレポーティングでも、データをMECEに整理することで分析の精度を高め、クライアントにわかりやすく伝えることができます。加えて、プロジェクト管理ではプロジェクトのタスクをMECEに分解し、抜け漏れなく管理します。

データ・アナリティクス入門

学びのバランスを保ちながら進めるコツ

緻密な準備が成功を導く? 慎重になり過ぎず、頭でっかちになり過ぎないことが大切です。手を動かす前に仮説を立て、何を比較するかの指標を決める必要があります。ただし、やってみないと分からないこともあり、その際には柔軟に変更しても問題ありません。 有効な切り口を探る方法は? 引き出しの多さと選球眼が求められます。専門知識が少ない領域では、まずはフレームワークに頼るとよいでしょう。専門知識がある領域にフレームワークを掛け合わせることで、発見が生まれます。筋のよい切り口を選択するためには、現場の肌感覚としてのドメイン知識が重要です。 例えば、webサイトからの問い合わせを増やすための分析が必要な場合、データはすべて手元にあるので実践可能です。流入経路、案件種別、問合せ企業の業種、企業の所在地、案件規模、実施月、実施までの期間など、指標となり得る項目が多数あります。これらの指標を基に、問い合わせ数との相関関係を探ることで、有効な分析が可能となります。 仮説とフレームワークの活用 システムの切り替えに伴うベンダー選定や資料作成、現場からの業務要件整理とRFP作成などの業務においても、フレームワークや仮説の立て方が活用できることを実感しています。これらの方法は、実務において有用であり、実際に業務を進める上での基盤となります。

戦略思考入門

異なる視点が生む成長の物語

個性の違いを感じる? 同じ職場で同じ業務に携わっていても、個々の考え方や向いている方向が異なることを学びました。異なる見解を否定するのではなく、別の視点を取り入れることでチーム全体の視野が広がり、より質の高いアウトプットが期待できると実感しています。 分析で全体を見直す? また、各種フレームワークを用いた分析を通して、事業全体や自分自身の業務を大局的に見直すことができると感じました。定期的にこれらの手法を実践することで、プロジェクト全体や自身の状況を整理し、効果的な改善・提案に結びつけたいと考えています。 共有で理解深める? さらに、普段当たり前と捉えている業務の内容も、言語化や図表化して共有することにより、チーム全体の目的意識を維持する手段になると確信しています。施策を提案する際には、フレームワークを活用して背景・根拠・想定される効果を明確にし、ストーリー性を持たせた説得力のあるアプローチを心がけたいと思います。 説得力の根拠は? チームメンバーとのコミュニケーションにおいては、分析結果を交えることで自身の主張に説得力が増すと感じています。業務推進においては、感覚だけに頼らず、3C分析やSWOT分析などを参考にしながら、合理的な判断とその決断が全体に与える影響を考慮することを意識していきたいと考えています。

データ・アナリティクス入門

仮説思考で学びを実践、諦めない心の重要性

仮説思考で成果を出すには? 仮説思考の鍛え方について体系的に学ぶことができ、非常に勉強になりました。毎回同じような学びであっても、体系的に言語化することで再現性が高まるため、自分で実践するにも他の人にアウトプットするにも非常に参考になります。 諦めない姿勢の重要性を再確認 仮説思考の鍛え方を通じて、「諦めず・熱意を持って・仮説を考え続ける」ことの重要性を改めて感じました。理解するだけではなく、それを実際に実践し、成果に結びつけることは非常に難しいです。そのため、「諦めない」ことがもっとも大切であると過去を振り返って改めて感じます。 継続的なデータ分析の意義とは? 経営データのデータ分析については、じっくりと分析する機会はあるものの、継続的には行っていません。課題は次々に発生するため、つい短絡的に結論を出してしまいがちです。これからはしっかりと時間を確保し、仮説検証を繰り返し行って問題解決の精度を高めていきたいと思います。 タスク整理と学びのルーチン化 まずは自分のタスクを改めて整理し、優先順位の低いものは権限移譲するか、削減して時間的余裕を生み出します(9月中に実施します)。また、毎週土曜日は極力「学びと実践」の時間とし、仮説検証を毎週のルーティンとして実践していきたいと考えています(今週から開始します)。

データ・アナリティクス入門

問題解決の新たな視点を得る学びの旅

解決へのプロセスをどう進めるか? 今回の講義を通じて、問題解決における「What、Where、Why、How」の各要素に分けて進めることの重要性を再認識しました。特に、平均値を見る際に「ばらつき」という視点が抜け落ちやすいことに気づけたことは大きな収穫です。ばらつきを確認することで、新たな気づきや次の問いに繋がることがあるため、これを自身の思考の癖として意識的に取り入れていきたいと思います。 データ分析はどう活用すべき? また、データ分析の活用については、会社業績の分析に役立てていきたいと考えています。各要素をもとにして思考を整理し、比較をギャップとして描き出す際には視覚的にグラフも活用します。さらに、考えの幅を広げるためのフレームワーク(3C・4P)を、幅を広げるだけでなく、様々な場面で応用できるように意識して使うことで、新たな気づきや問いにも繋げていきたいと思います。 比較分析はどのように進化する? 自身の役割としては、バックオフィス化を進めることに加え、会社業績の分析資料の作りこみも進めています。Q2の考えを柱として、基本的な比較においても、前期・前月比以外に施設間比較や競合の数値を集めての比較、さらに売上の分解(ロジックツリー)なども行い、自社のマーケティング施策の検討に繋げていきたいと考えています。

クリティカルシンキング入門

問いが変える未来のカタチ

どんな問いが大切? クリティカルシンキングの講義を通じて、問いの重要性を再認識しました。自分や他者の考えを鵜呑みにせず、常に「本当か」と問い続けることで、従来の経験や考え方の偏りを避け、より広い視点から物事を考える必要性を感じました。 どの問いに向き合う? また、ものごとを深く考える際は、まず「今、どの問いに向き合うべきか」を明確にすることが大切だということが印象に残りました。答えや解決策に飛びつく前に、問題や課題の本質をじっくり捉えることで、正しい判断や効果的な解決策に繋げられると理解しています。 チーム作りで気づいたことは? 私は、チームの管理職として、4月以降の体制構築に取り組んでいます。各管理職やメンバーの意見や課題を参考にしながら、チームの体制作りを進める中で、表面的な意見だけではなく、その背景にある真の課題を捉えることの重要性に気づきました。対症療法に終始せず、根本的な解決へと導くためにも、問い続ける姿勢が不可欠だと考えています。 背景をどう探る? 今後は、各管理職やメンバーの意見に対して「なぜそうなのか」を問い、様々な立場から背景や潜在する課題を分析していく予定です。その上で、分析した課題をイシューとして整理し、管理職間で共有しながら議論を進め、体制構築に活かしていきたいと思います。

データ・アナリティクス入門

データ分析で変わる意思決定の未来

データ分析の意義とは? データ分析をビジネスに活用することの本質を理解し、考え方や手法を再設計して、自分のものにしたいと感じました。データ分析で課題を解決するとは、「勘と経験に頼る意思決定の方法を、データ分析を用いた合理的な意思決定へと改めること」を指しています。そのために必要なことを次のように整理しました。 シナリオ設計のコツは? まず、ビジネスに貢献するシナリオを描くことが重要です。そして、データを基にした意思決定プロセスを設計し、解消したい問題と解決する課題を言語化します。さらには、意思決定のプロセスを形式知として明文化することが必要です。 問題点は何か? 具体的な問題としては目標未達があり、その課題として購入増加、キャンセル回避、Webサイト離脱の回避、および集客増加といった点が挙げられます。これらの課題を「意思決定プロセス」に深く掘り下げていくことが今後の大きな課題と考えています。 今後の展望は? 今後の6週間では、問題と課題のさらなる言語化を進めていきたいと思っています。また、意思決定プロセスの6種類のうち、特にマーケティング型の「仮説試行型」と、経営者の思考バイアスを低減させるための経営者判断型について、さらに学びたいと考えています。そして、意思決定プロセスの形式知化を設計していく計画です。

データ・アナリティクス入門

4ステップで掴む課題解決の秘訣

4ステップを理解? 今週は、問題解決の4ステップ「What(何が問題か?)」「Where(どこに問題があるか?)」「Why(なぜ問題が起きているのか?)」「How(どうするか?)」を学びました。これにより、問題を定量化し、範囲を絞り、原因を分析して具体的な解決策を導くという、論理的な課題整理の手法が実践的に理解できました。 ロジックツリーの効果? また、ロジックツリーの活用法も学び、問題を「モレなく・ダブリなく(MECE)」分解する方法が、構造的な分類や深掘りにとても役立つと感じました。現場での意思決定や具体的な課題整理に、この手法を応用できる点が印象的でした。 企画立案のコツは? 企画の立案時には、問題解決の4ステップを活用し、過去と未来の問題に分けて検討することで、理想の状態を明確にし、提案が本質から外れないよう注意することができると実感しました。加えて、アイデア出しの際にロジックツリーを用いることで、問題を細かく整理し、深い考察が可能になる点も大きな学びでした。 実行前に再確認? 思いついた企画をすぐに実行に移すのではなく、一度立ち止まって問題解決のステップを確認すること、そして企画が進行している段階でも都度、本来あるべき状態と現状のギャップを再確認することの重要性を感じました。

「分析 × 整理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right