データ・アナリティクス入門

データ分析の新たな視点を業務に活かす

データ比較の意義とは? 「分析は比較なり」という考え方の重要性を再認識しました。ビジネスにおける意思決定の際には、データを用いた提言を行う中で"比較対象"や"基準"を明確にしておくことが上流段階で大切であると感じています。 データの見せ方をどう工夫する? また、定量データの種類に応じて、適切な加工法やグラフの見せ方があることを学びました。普段から業務でプレゼンテーション資料を作成していますが、これまでは感覚的に数字を表示していました。今後は、実数で見せるべきものと割合で見せるべきものの区別を意識して、より効果的に可視化していきたいと思います。 分析の視点を資料にどう活かす? 資料作成の際、分析結果や二次情報を取りまとめるにあたり、「比較」や「数字の見せ方」といった、わかりやすい表現方法を意識していこうと考えています。また、業務委託先を選定する際に、選定基準や評価基準を整理するためにも、分析の観点を活用することができると感じました。 新たな観点を業務にどう適用する? これまで意識してこなかった新たな観点を業務に適用するために、まず業務の目的をしっかりと立ち止まって整理し、可視化することを習慣化したいと思います。これにより、意思決定を促進するためのデータ活用の余地があるかどうかを判断し、適切な判断ポイントを組み込むことができると考えています。

戦略思考入門

実務に生かす学びの一歩

授業内容をどう実務化? 授業で学んだ内容を業務にどう活かすかを考える過程で、配車アプリと中古車販売事業のシナジーに関して、まだ自分の視野が狭く、知識が十分に定着していないと痛感しました。そのため、基礎から復習し直す必要があると感じています。 動画学習は何を教える? 動画学習では、規模の経済性において、生産量が月ごとに変動する場合、調整の仕方によっては不経済になる可能性があるという点が新たな学びとなりました。また、習熟効果に関しては、問い合わせに対応する際の時間差から、チーム内でのスキルのばらつきを感じることができ、これをどう改善していくかという対策の重要性を再認識しました。 具体策はどう進める? 具体的な取り組みとして、習熟効果を高めるために、まずは定例会議で事例の共有とポイントの説明を行うこと、また、よくある質問やその回答をまとめた資料を作成し、いつでも参照できる環境を整えることを計画しています。これにより、チーム全体の対応力を底上げできると考えています。 連携で成果はどう? さらに、範囲の経済性については、他部署と共同で展示会などを行う際に得られるメリットを整理し、具体的な提案ができるよう、事前に自社のバリューチェーンを再分析することを進めています。こうした取り組みを通じ、実務に直結する形で学びを業務に生かしていきたいと思います。

データ・アナリティクス入門

数字が紡ぐ学びの軌跡

データ加工はどう整理する? データ加工においては、数値に集約して捉える、目で見て把握する、そして数式に集約するという3つの方法を基本としています。 分析はどう進む? 分析の際は、まず目的(問い)を設定し、仮説を立てたうえでデータ収集・検証を繰り返すプロセスが基本です。さらに、インパクト、ギャップ、トレンド、ばらつき、パターンの視点と、グラフ、数字、数式というアプローチを組み合わせることで、多角的に情報を捉えています。 数値管理はどう考える? 具体的な数値の扱いとしては、代表値に単純平均、加重平均、幾何平均、中央値を用い、散らばりは標準偏差で表現します。ただし、平均値は外れ値の影響を受けやすいことに注意が必要です。 セグメントはどう見る? また、キャンペーンメールのデータと顧客データを用いた分析では、どのセグメントにどのような傾向があるかを明確にし、それをもとに有意差が見込める仮説を立てる際に、プロセス・視点・アプローチの組み合わせが効果的であると感じました。 検証の深め方は? 以前は、キャンペーンメールと顧客データを分析する際、インパクト、ギャップ、トレンド、ばらつき、パターンといった視点に十分意識を向けていなかったため、今後はこれらの視点をしっかりと取り入れながら仮説を立て、より精度の高い検証を行っていきたいと考えています。

データ・アナリティクス入門

ロジックツリーの本質と実務への応用

MECEの難しさと挑戦 MECEを意識しすぎるあまり、本質的なロジックツリーを作れていないことがあるのは、本当にその通りだと思いました。漏れなく整理するために「その他」を多用している自分を容易に想像でき、今回の講座内容は非常に自分事として受け止めることができました。 良質な示唆を得るには? MECEは重要ですが、あくまでフレームワークの一つであり、問題解決に繋がる良質な示唆を提供できる分け方が求められます。現状の自分の役割としては、営業戦略の策定と売上増加のための施策検討があり、常に課題解決に取り組む状況です。Week 01から学んでいる内容は、まさに今の業務に直結するものです。 定量的な分析を目指して WhatやWhereを置き去りにせず、現状の分析とありたい姿やあるべき姿をしっかり定義し、どこにギャップがあるのかを定量的に、そしてMECEに整理できるようにしたいです。前提となる「現状分析やありたい姿の定義」は、頭の中でわかった気で終わるのではなく、しっかりと言語化することを意識します。 フィードバックの活かし方 MECEのアプローチは、一人でアウトプットを出したうえで、同僚や上司からフィードバックをもらい、自分では気付けない「漏れやダブり」を見つけることが大切です。そのためのブラッシュアップを行い、練習を重ねていきたいと思います。

データ・アナリティクス入門

目的明確!整理から始める本気の分析

比較はどんな意味? 「分析は比較」という考え方は、これまでさまざまな講座で耳にしていましたが、「比較する対象を見出す」という点については、あまり深く考えたことがありませんでした。そのため、今回の学びを通じて、まずは「どんな目的で分析を行うのか」や「ありたい姿」と現状のギャップを整理(言語化)することに意識を向け、分析のスタート地点としてしっかりと理解を深めたいと考えています。 現状整理はどう進む? 業務では、依頼主から提示される課題に対して、その課題=「在りたい姿」と「現状」の整理が不十分なまま、すぐにデータに取り掛かることが多くありました。そのためか、「こっちだったかも?」や「なんかズレてきている?」という不安にかられ、進めていた分析で手戻りが発生することも多々ありました。そこで、データに触れる前に、一度しっかりと整理してから進めるべきだと改めて感じています。 新規案件の見通しは? 今回、新規の案件にあたっては、以下の点について整理しながら進めていく予定です。まずは分析の目的を明確にし、ありたい姿を言語化します。次に、現状の把握と、現在手元にある指標の洗い出しを行い、ありたい姿とのギャップを埋めるために必要なデータを整理します。こうしたプロセスをメンバー間で共有し、認識を合わせながら進めることが、より効果的な分析につながると期待しています。

リーダーシップ・キャリアビジョン入門

自分を見つめるキャリアの再出発

キャリアの本質は何? キャリアアンカーとは、仕事を進める上で自分にとって最も大切な価値観を明らかにするもので、現状と理想の自分のギャップを認識するのに役立ちます。また、部下の働く意欲や考え方を把握する際にも有効です。一方、キャリアサバイバルは、今後の仕事や周囲の変化を踏まえ、必要なスキルや訓練、適任者像を考えることで、組織内での生存戦略を立案する考え方です。これらは、①仕事の棚卸し、②環境分析、③仕事の見直しというステップで進められます。 学びは足りていますか? 今回の学習だけでは、他者に説明できるレベルに達していないと感じました。そのため、まずは別の書籍などを通じてキャリアに関する知識を深め、自分自身のキャリアアンカーを改めて考察することにしました。その上で、職場でキャリア理論の紹介の場を設け、部下にも自身のキャリアアンカーを考えるよう促す提案を行い、各自がどのように成長し理想に近づけるかを共に考える雰囲気を作りたいと思います。 実践はどう進める? 具体的な取り組みは、まずキャリア理論に関する書籍を読み、自分のキャリアアンカーを整理することです。そして、職場でキャリアに関する理論を紹介する場を設け、部下に対して自身のキャリアアンカーを考えてもらうよう提案します。さらに、部下との個別面談の機会に、その考察内容をもとに意見交換を進める予定です。

クリティカルシンキング入門

数字の裏に隠れる小さな真実

数値分解の意義は? 数値を細かく分解・加工することで、見落としがちな示唆を得る可能性があります。また、数値はグラフ化することで、より分かりやすく伝えることができます。分析の際は、「誰が」「いつ」「どのように」という多角的な切り口を用意しておくと効果的です。 分解作業の狙いは? 今回のワークは、与えられた数値をどのように分解するかに焦点を当てました。アンケートの設計・配信・分析といったタスクにおいては、どの切り口でどのような分析を進めるか全体像を押さえつつ、選択肢を適切に分解しておかなければ、いくらデータを集めても活用できないリスクがあります。 仮説検証はどう? また、新しい発見がなくても、今回の分解作業で得られなかった知見を学びとして前向きに捉えることが大切です。単にアンケートを配信するのではなく、小さな仮説検証を重ねることで、より精度の高い内容にブラッシュアップしていくことが求められます。 生成AIの使い方は? まず、全体像を明確に定義した上で、生成AIを活用しながらアイデアを整理します。その後、専門知識を有する関係者と確認を行い、情報が重複せず整理されているかをレビューしていきます。 基本属性の整備は? さらに、顧客の基本属性については、共通の型として整備し、自分だけでなく部署全体で再利用できるように準備を進めています。

戦略思考入門

差別化を目指すVRIO活用の挑戦

どこで差別化が足りる? 私は、日常業務において差別化を意識して取り組んできましたが、その中で場当たり的な意見に左右されがちであったことを今回の学習を通じて実感しました。VRIOフレームワークを活用し、情報を抜けもれなく整理することで、場当たり的でない継続的な施策を考えることができると理解しました。 事例と現実のギャップは? 明確な事例であれば、VRIOでの情報整理はスムーズに進むでしょう。しかし、ビジネスの種類や状況によっては必ずしもそう簡単にはいかないと感じます。例えば、「顧客にとっての価値」という観点では、BtoBよりBtoCの方が分かりやすくまとめられるかもしれません。また、「Yes」「No」の判断には、VRIO以外のフレームワークを組み合わせる必要があるかもしれません。実際のビジネスは複雑であるため、分析する際にはいくつかのフレームワークを組み合せることが求められる、とハードルの高さを感じています。 広報での活用法は? それでも、VRIOの活用は私の従事する広報業務において非常に有効だと考えています。できるだけ早く実行に移したいと考えつつも、現実的には一筋縄ではいかないと感じています。まずは、日々の企画業務に少しずつ取り入れ、周囲のメンバーからのフィードバックを受けつつ、多様な視点を吸収し、判断軸を精緻化していきたいと思っています。

データ・アナリティクス入門

ロジックで変える!問題解決のヒント

要素を分解する理由は? 要素を細かく分解して考えることの重要性を実感しています。ロジックツリーやMECEを用いることで問題解決に導く考え方は知っていましたが、実際の業務で活用する機会はほとんどありませんでした。しかし、例えば売上不足の原因分析において、感覚的な判断のみで進めると、実は客単価に問題があるにもかかわらず、売上数の伸び悩みにだけ着目してしまい、重要な視点を見落とす可能性があることを改めて認識しました。 良い切り口はどこに? また、悪い面ばかりに目が行きがちですが、良い切り口も取り入れることで全体の傾向が見え、適切な対策を講じやすくなると感じます。たとえば、自社で提供しているクラウドサービスの解約要因やアップセルの要因を分析する際は、業界、契約ユーザー数、利用部門、契約年数、ログイン回数などを軸に、理想と実際のギャップをMECEの視点で整理することが有用だと思います。 問題の整理はどうする? 今後、業務上で何かを分析する必要が生じた際には、まず直面している状況を具体的に整理し、問題(What)を明確に定めることが大切だと感じています。その上で、問題がどこにあるのか(Where)、原因は何か(Why)、そして解決策はどうあるべきか(How)をロジックツリーを用いて整理することで、問題解決の思考を習慣化していきたいと考えています。

戦略思考入門

顧客目線で差別化を進める新戦略

顧客目線はどう考える? 差別化を考える際には、まず顧客視点から捉えることが重要であると学びました。これには、実現可能性や競合が真似しにくいこと、そして持続性も考慮する必要があります。ワークを通じて、顧客目線での視点が不足しがちであったことに気づきました。具体的には、競合は必ずしも同じ業界に限らず、施策にかかるコストも無視できません。 自社の強みは何か? 私は現在、施設管理の業務に携わっていますが、これまで会社全体として自社の強みを言語化したことがありませんでした。このため、VRIO分析を用いて、会社全体および所属部門の強みを整理することにしました。また、同一業界で似たような事業を展開する企業は競合として認識していましたが、顧客視点で自社の競合を見直す必要があると感じました。そのため、競合が展開するサービスを分析し、自社の差別化や新規サービスの開発に役立てようとしています。 新戦略はどう描く? 現在展開しているサービスについて、完全に新しい打開策が求められる状況です。このため、顧客目線を重視した視点で、競合調査やサービス分析に取り組むことが急務です。来週には社員を集めて重点課題のアイデア出しを行う場を設けています。その前に、顧客が誰で、顧客目線で競合がどこにあるのかを明確にした資料を作成し、社員の共通認識を整えた上でアイデアを出す予定です。

データ・アナリティクス入門

仮説で切り拓く学びの未来

仮説の種類は何か? 仮説は、目的達成のための仮説や問題解決への仮説という2種類の仮説と、過去・現在・未来の視点を組み合わせた全6通りに大別されます。 複数仮説の効果は何? 仮説思考においては、複数の仮説を立てることと、その網羅性を意識することが重要です。網羅性を確保するためには、3C(Costmor、Competiter、Conpany)といったフレームワークを用い、さらにConpany分析の詳細については4Pの視点から整理することが有効です。 未来検証の焦点は? 未来型の目的に対する仮説検証では、目的達成のためにどのような考察や分析が必要かを事前に整理します。例えば、ある番組が視聴率を獲得できるかという問いに対しては、定型的な分析に入る前に3Cや4Pのフレームを用いて、どの部分にボトルネックが存在するのか、またそのボトルネックをどの程度克服できるのかという視点で考察を進めることが求められます。 仮説整理の進め方は? 依頼された仕事に取り組む際は、まずそれがどの仮説に該当するかを整理し、問題点についての仮説検証を行います。具体的には、WHAT、WHERE、WHY、HOWの順に問いを整理し、すぐにWHEREに入らないように注意します。そして、仮説の網羅性を保つために、フレームワークを意識しながら整理資料を作成することが推奨されます。

クリティカルシンキング入門

数字の捉え方を変える新発見への旅

数字の切り口をどう捉える? 数字の切り口には複数のパターンがあり、その見え方は切り方次第で変わるということがよく理解できました。しかし、切り口によっては解釈を誤る可能性もあるため、それをどのように防ぐかが重要なポイントだと感じました。 フレームワーク活用のヒントは? 分解の方法として3つのフレームワークが存在し、特にプロセスで切り分ける方法は今後意識して取り入れたいと思います。これらが効果を発揮するためには、ある程度の基礎知識やMECEといった考え方が必要であり、体系的に知識やスキルを習得する必要性を感じました。 管理会計で何を見極める? 現在の職務において、既存事業の理解には、売上構成などを管理会計的に分析することが重要だと考えています。ここでGailという手法が活用できると思いました。最初に事業を分解して特性を理解し、その特性から課題を洗い出していきたいと考えています。そして、今後の社会情勢と照らし合わせて事業の方向性を整理したいです。 整理と議論はどう進める? まずは既存事業部の情報収集を始め、その一方で管理会計の知識を身につけ、管理会計としてのプロセスを整理し、フォーマットを作成してみたいと思います。これにより自身の事業理解を深め、経験者とディスカッションを行い、現状の事業課題や今後の事業戦略に反映したいと考えています。

「分析 × 整理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right