クリティカルシンキング入門

気づきが変えた!思考の深掘り術

なぜ深掘りが重要なのか? 物事に対して「なぜ」と深く掘り下げる姿勢が大切だと気づきました。データや他人の意見を表面的に捉えることが多かったことに改めて気づかされました。クリティカル・シンキングがなぜ必要なのか。物事の意味を深く考えることが、その本質を捉えることに結び付くのだと実感しました。 ロジックツリーで得られる新しい発想とは? また、ロジックツリーの考え方を学び、自分の思いつきに頼った方法から離れることができました。課題に対して原因をカテゴリーに分けて掘り下げることで、新しい発想を得られることがあります。今後もこの考え方を活用していきたいと思います。 なぜデータの深掘りが必要なのか? 具体的には、新商品の企画立案や商品の売上分析の際に役立つと考えています。市場調査や顧客の声を参考にしている中で、データをそのまま受け取ってしまうことがあるため、なぜそのような意見やデータになるのか深掘りする思考を持ち、情報を整理することに努めたいです。また、売上分析では、顧客の感じ方をより深く理解するために「なぜ」を問い続けることで、具体的な施策提案につなげられると考えています。 思考整理の習慣化はどう進める? 一度学んだからといってすぐに身につくわけではありませんが、まずは日々の考え方の習慣づけから始めて、自分の能力として高めていきたいです。例えば、上司に確認する予定の内容について「なぜそう思ったのか」を考え直し、思考整理を進めます。また、現在の課題や案件にロジックツリーを使い、漏れや重複がないかを確認しながら原因と考察をしていく予定です。

データ・アナリティクス入門

データ分析で未来のトレンドを掴む方法

比較で何が分かる? データ分析は、比較することで初めて意味が生まれます。そのため、分析の目的に応じて適切な比較対象を設定することが重要です。データ分析の目的を明確に整理し、関係者間で共通認識を持つことが大事です。漫然とデータを分析するのではなく、目的達成に必要な事項を洗い出し、仮説を立て、仮説の検証としてデータの収集と加工を行うといった順序に従って進めていくことが望ましいです。 販売動向はどう見る? 具体的には、自社や他社商品の販売動向とその結果の要因分析を行い、次の新商品開発に生かすことが挙げられます。売れている商品の共通点やトレンド、どのような顧客にどのような商品が売れているのかを購買データから分析します。そして、売れない理由についてアンケート調査の結果を分析します。また、売上が低迷している商品のリニューアルに向け、売上低迷の要因を購買者層の変化から分析し、競合品の販売動向や購買者動向の分析、アンケート結果の分析を通じて方向性を示します。 調査結果は効果的? さらに、商品コンセプト調査結果やアンケート調査の効果的な分析により、商品案の軌道修正を行い、説得力を高めることも必要です。 前段階で成功策は? これらのプロセスを進めるにあたっては、アンケート調査票の作成やデータ収集の前に、目的の整理と関係者間での共有を行うことが不可欠です。そのうえで、必要な事項を洗い出し、仮説を整理し、収集したデータの加工の方法までを想定し、全体像をイメージして作業を進めることが大切です。データ収集の前段階を丁寧に行うことが、成功の鍵となります。

戦略思考入門

フレームワーク活用の楽しさと難しさ発見

フレームワークってどう活かす? これまでの学習を通じてフレームワークの内容は理解したつもりでしたが、それを実践に移す難しさを感じました。総合演習では与えられた状況を分析する際、どのようにフレームワークを活用すれば良いのかを整理するのに時間がかかりました。こうした経験から、まずはフレームワークに落とし込んで見える化することの重要性を実感しました。また、「仮説設定と仮説検証」を繰り返して考えることの重要性にも気づきました。物事を分析し、ある結論に導くためには多くの情報の中から必要な情報を選び出し、仮説として組み立てる必要があります。そのためには、大胆に考えた後、仮説検証を十分に行うことが求められると感じました。 教育企画はどう進める? 現在担当している教育体系の企画業務においては、無暗に研修手段の情報を収集して選定するのではなく、自社の環境や課題をまず分析し、必要な施策を検討することの重要性を感じています。また、教育関連の企画においては仮説設定に重きを置く傾向があるため、実施の前に事業本部にヒアリングを行うなどして、仮説検証を十分に行う必要があると考えています。 分析で信頼を築ける? 自社分析や外部環境分析の際、SWOT分析やPEST分析といったフレームワークを活用することで、上司や他の人々にも納得しやすい提案ができると感じました。今後もフレームワークの活用を実践していきたいと考えていますが、フレームワークを使うこと自体が目的にならないよう注意し、企画の根本的な目的を忘れず、無理にきれいにまとめようとしないことも心がけたいと思います。

データ・アナリティクス入門

課題を分解!納得解決への道

課題の裏側は何? 課題に取り組む際は、各要素を因数分解し、ステップごとに整理することで納得感が高まると実感しています。今回の課題も、最初はアンケートによる満足度の低下に着目しましたが、さらに深堀りすることで、事業の柱である上級クラスの今後の採用方針まで課題が波及していることが見えてきました。目の前の問題を一気に解決しようとするのではなく、その課題から導かれる仮説をひとつずつ丁寧に検証し、対処していく姿勢を大切にしています。 分析の進め方はどう? また、業績に直結する数字の悪化など、すぐに解決できる施策を探すことに注力しがちですが、分析のステップをじっくり進めると、チームビルディングや個々の業務の進め方など、すぐには表面化しない根深い問題にも気づくことが多いと感じています。こうした課題に対して、全員が納得しながら解決に向けて取り組むためには、段階を追って問題解決を進めることが重要であり、わかりやすいアプローチが求められると感じました。 仮説の説明はどうなってる? 自分の考えた課題と、分析によって得られた仮説や解決策を順を追って説明することで、関係者にも理解しやすくなると考えています。また、一度に説明しても伝わりにくいため、各会議の場でテーマごとに議題として取り上げ、直接関係するメンバーに課題を提示するようにしています。例えば、ある会議では売上改善のための施策や単価、人数といった具体的な対策、さらにターゲットとすべき客層や現行の営業アプローチの方法など、段階的に議論を進めることで、最も効果的なアプローチを模索しています。

クリティカルシンキング入門

平易な言葉で伝えるクリティカルシンキングの力

クリティカルシンキングで学んだことは? クリティカルシンキングの学びで特に印象に残ったのは、平易な言葉で相手に伝える重要性です。立場が違えば、物事の見方や考え方も変わることをケースを通して学びました。私は物事を簡潔に伝えるのが苦手です。その理由を考えたとき、①課題の整理ができていない、②抽象的な言葉のほうが自分にとって伝えやすいという癖があるため、自分の範囲内で考えて専門用語や抽象的な表現を多用してしまうのだと気づきました。 今後どのようにコミュニケーション力を高める? これからは広い視点で分析を行い、誰にでもわかりやすいコミュニケーションを意識していきたいです。上司への提案や業務分析など、思考が必要な場面では大いに活用できると感じました。AIの進歩により、疑問に対する答えは簡単に見つかりますが、条件設定などでの役割はまだ人間の手が必要です。多角的な視点で分析できることで、今まで一つの答えしか考えていなかった現状を変えていきたいと思います。 さらに、簡潔でわかりやすい伝え方を意識し、提案やコミュニケーションをスムーズにしていきたいです。そのために次のことを意識して行動したいと思います。①図で示す、②定量的に示す、③専門用語を使わない、④様々なケースを考える、⑤結論から伝える。 自分自身のどのようにアップデートする? これらの意識をもとに行動し、自分自身をアップデートしていく必要があると考えています。ただクリティカルシンキングだけでなく、MBAの基本的な知識や他業種の情報も積極的に取り入れ、多角的な視点を身につけていきます。

アカウンティング入門

数字が語る経営の秘密

授業でのB/S分析意義は? ライブ授業やグループワークで、ある企業のB/S分析に取り組みました。まず、授業では、企業が提供する価値(非日常体験やホスピタリティなど)を確認し、そこから生み出される売上項目(入場料、宿泊料金、飲食、グッズ、ロイヤリティなど)を整理しました。さらに、これらに伴う費用(売上原価)についても順を追って考えることで、抜け漏れを防ぐ手法を理解しました。一人ではなく、他者の意見を取り入れることで得られる学びの大きさを改めて実感するとともに、実際のB/Sの数字から、流動資産の現金が多い理由を納得することができました。自分が勤務する会社について、どのようなリスクマネジメントが行われているのか、また固定資産の減価償却や耐用年数についても関心が高まりました。たとえば、自社ビルの償却終了後の対応などを多角的に考える必要性を感じました。 設備投資戦略の秘密は? 勤務先の設備投資や固定資産戦略についても興味が湧き、資料を探したり担当者と話をする中で、自分の知見や考え方を広げたいと思うようになりました。また、他業種のビジネスにも関心があり、各企業の会計情報をまとめた書籍を購入して読むことで、日常のビジネスシーンに活かせる知識を得ています。 決算の背景を探る? さらに、企業会計に対する興味から、先日行われた大手自動車メーカーの決算発表を単に数字で捉えるのではなく、その背景や今後の展開について考察する機会となりました。この経験をもとに、自社や自身のビジネスの在り方を、情報を整理しながら自ら考えていこうとする意識が生まれました。

クリティカルシンキング入門

分解で見える本質への道

データ分解の意味は? データを多角的に捉えるための分解フレームワークを学びました。このフレームワークでは、①分け方を工夫する、②切り口を変えて考える、③複数の切り口を用いる、④導いた仮説が正しいか自問する、といった思考スキルを活用します。こうした手法により、データを正しく理解し、課題解決へとつなげることが可能になります。また、切り口を検討する際は、目的に沿ってMECEの原則を意識することが重要です。 顧客インサイトはどう? 現在、タスクチームで顧客インサイトに基づくConfidence活動を担当しています。顧客インサイトは、顧客ニーズの特定や戦略策定において重要な情報資源ですが、膨大なデータと多岐にわたる内容により、情報の整理や可視化に課題を感じています。さらに、目の前の数字や表にとらわれがちで、「そのデータから何を導き出すか」という視点が薄れることで、本質的な課題に辿り着けない可能性もあります。 分解スキルの使い方は? そこで、今回Week2で学んだ「分解」のスキルを活用し、データ分析に対する心理的ハードルを下げたいと考えています。まずは来月の顧客インサイト分析資料作成に向け、手を動かしてデータを分解することから始めます。その上で、目的に沿った複数の切り口を検討しながら、自分自身で問いを立て、データを深掘りしていきます。表やグラフなども試行し、情報をいかに伝えやすくするか工夫していきます。最終的には、使用した分析手法と見えてきた課題、そこから導かれる解決策を、チームメンバーに分かりやすく説明できるよう整理するつもりです。

デザイン思考入門

実践で感じたユーザー視点の魅力

アイデアの出し方は? ブレインストーミングを用いて短時間で多くのアイデアを出し、KJ法で整理して優先順位を明確にすることで、ユーザー体験の視点から課題にアプローチできると感じました。さらに、シナリオ法を使いユーザーの行動や感情を深く分析することで、課題解決の糸口が具体的に見えてきました。ペーパープロトタイピングを活用し早期にフィードバックを得ることや、バリューポジションを明確にして独自の価値を伝える手法、そして競合調査を通じてターゲットのニーズに合った方針を策定することが、ユーザーに寄り添ったWebサイトやサービスの提供につながると考えています。 チーム作業の効果は? 実践からは、ブレインストーミングをチームで行うことで個人では引き出せない多様なアイデアが見えてくることを実感しました。また、シナリオ法によりユーザー視点での課題が明確になり、解決策が具体的になった点も大きな気づきでした。これらの手法を組み合わせることで、より効果的なサービス作りが可能になると感じ、今後の実践に活かしていきたいと思います。 学びをどう活かす? 今日の学びでは、アイデア出しや製品コンセプト策定に関する重要なアプローチを学び、実践にどう反映させるかを考える良い機会となりました。ブレインストーミングやKJ法で個人では気づきにくい視点をチームで整理し、シナリオ法を通じてユーザーの想いや行動を深く理解することが、ユーザー中心のサービス作りに直結すると再認識しました。これらの知見を自分の業務に取り入れ、具体的な改善策を模索していく意欲が湧いています。

データ・アナリティクス入門

実例でひも解く市場戦略のヒント

市場分析はどうする? 市場分析においては、従来の市場重視だけでなく、3Cおよび4P分析の重要性を実感しました。特に、競合の存在に対する意識が不足していた点を改める必要があると感じています。また、プロモーション戦略については、各校舎ごとに異なる方式を採用すべきだと納得しました。 データ収集はどう? データ収集に関しては、まず公開されているデータを積極的に探すことが基本であると再認識しました。官公庁のサイト、新聞、経済誌など、どのようなデータが存在するかを日常的に意識することが大切です。 現状認識はどう? まずは現状を確認し、当たり前のことでもしっかりと言語化することで、チーム全体で共通認識を持つことが重要です。その上で、原因となる事象を特定し、具体的な解決策の検討に取り組む流れが効果的であると感じました。 仮説検証は? さらに、仮説を立てた上でユーザーアンケートをデザインする際は、因数分解やクロス集計が可能な形を意識することが求められます。フレームワークを活用し、実際に分析とその言語化を進めることで、より具体的な解決策に近づけると考えます。 チーム共有は? また、アンケートデザインにおいては、チーム内で考え方や方針を共有し、どのような分析が可能か、そして実際にどのようなレポートを作成するかを仮で作成して検証するプロセスが重要です。望ましい状態と現状を整理し、効果的なフレームワークを見つけて習得すること、さらにはその内容を資料にまとめ、教えられるようにすることも大切だと実感しました。

データ・アナリティクス入門

受講生が綴るリアルな学びストーリー

仮説立ての理由は? 問題解決にあたっては、まず4つのステップに沿って検証を進めることが大切です。特に、データを見た段階で早急な結論に飛びつくのではなく、まず仮説を立て、その仮説を検証するプロセスを欠かさないようにしましょう。データはその見せ方によって印象が変わる可能性があるため、作成者の意図に左右されずに正しく理解することが求められます。また、フレームワークを効果的に活用することで、検証漏れや盲点の発見にもつながります。 分類・比較の意味は? 分析の基本原則としては、「分類して比較する」という手法が重要です。各データの確からしさや抜け漏れ、見逃しがないかを確認するために、データを適切に分類し、条件をそろえて比較する工夫が必要です。データをそのまま受け入れるのではなく、仮説を立てながら検証する姿勢を保ち、多様な分析フレームワークを活用することで、思い込みを排除して正確な評価が可能となります。 比較意識のポイントは? さらに、分析の際には分けて比較することを常に意識してください。比較対象を同じ条件の下で整理することで、普段気づかない新たな視点を得ることができ、より納得のいく分析結果に繋がります。 重要ポイントとは? 最後に、これからデータと向き合う上で絶対に忘れてはならないポイントを挙げると、まず「分けて比較する」という基本原則、次に仮説思考、そして What、Where、Why、How の4ステップに沿って考察することです。これらを意識することで、より論理的かつ的確な分析が実現できるでしょう。

アカウンティング入門

利益の裏側、覗いてみませんか

損益計算書を理解できた? 今週は、損益計算書の構造を体系的に整理することができました。売上高からさまざまな費用を引いていく過程を順を追って理解することで、最終的にどのように利益が生み出されるのかが明確になりました。 粗利の計算方法は? まず、売上高から売上原価(仕入れ、材料費、人件費など)を引くことで、売上総利益(粗利)が導かれます。次に、販売費および一般管理費(広告費、販売手数料、オフィス賃料、管理部門の人件費など)を差し引くと、営業利益が算出されます。 利益計算の流れは? さらに、営業利益に営業外収益を加え、営業外費用を引くことで経常利益が求められます。ここでは、受取利息や支払利息、為替差損益など、本業以外の収支が反映されています。最後に、経常利益から特別損失や法人税等を差し引くことで、当期純利益が確定します。一時的な損益が反映されるため、この段階で企業の最終的な利益が示されます。 どこで利益が生まれる? この一連の流れを通して、企業がどの段階で利益を生み出し、どこにコストが発生しているのかを具体的に把握することができました。また、さまざまな業種に投資する際、各企業の損益計算書を比較することで、例えば製造業とSaaS企業ではコスト構造や利益率に大きな違いがあることを理解でき、投資判断や経営支援の質向上につながると感じています。 投資先をどう分析? 今後は、定期的に投資先の財務諸表を比較・分析し、どの部分で企業価値が生み出されているのかを見極める習慣をつけていきたいと思います。

データ・アナリティクス入門

小さな目的で大きく飛躍

なぜ目的を明確に? データ分析を始める前に、何のために分析を行うのかを自分自身で明確にすることが大切だと実感しました。たとえば、ただ「売上を上げる」といった大まかな目標ではなく、単価の向上や客数の増加、さらにはリピート客数の増加といった細かな目的に分解することで、具体的なデータの必要性が見えてきます。 どう仮説を組み立てる? 目的が定まったら、その目的に沿った仮説を立てることが重要です。普段の経験から導かれる傾向や、検証に必要なデータの方向性を見極めることで、より実効性のある仮説に繋がると感じました。 範囲の整理はできた? 分析の範囲は、状況の把握、課題の特定、そして最終的な解決策の提示と幅広いものがあります。たとえば、舞台関連の業務で観客のデータやアンケート結果を扱う際も、リピーターの観劇回数を増やすための施策や、特定の公演回における入場率の偏りを解消するための工夫を検討するなど、具体的な目的に基づいて分析に取り組む必要があります。 経験から何を学ぶ? 実際に、目的が曖昧なまま全てのデータ取得を依頼してしまい、大きな負荷をかけてしまった経験もあります。もっと目的を絞って依頼していれば、時間も労力も節約できたと反省しています。 今後の改善策は? これからは、データ収集の前に必ず「何のために」分析するのかを立ち返り、その目的が状況把握なのか、課題識別なのか、または解決策の提示なのかを明確にし、最小単位に分解した目的を一つずつ積み上げながら大きなゴールを目指していきたいと思います。

「分析 × 整理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right