クリティカルシンキング入門

目に仕事させる分析術

グラフで何が見える? 数字や表をそのまま眺めるのではなく、グラフ化することで「目に仕事をさせる」という考え方が印象的でした。数字を様々な角度から検証し、視覚的に捉えることで、普段は気づきにくい点が浮かび上がると感じました。また、MECEという概念についても、モレなくダブりなく分析するための具体的な手法(層別分解、変数分解、事象のプロセスでの分解)があることを学び、今後の分析において意識して活用していきたいと思いました。 現状把握のコツは? 私は全社の事務部門において、業務プロセス上の課題を明確にし、改善策を提言・実行する役割を担っています。各種データから課題や問題点を抽出する際、今回学んだ分析手法を取り入れることで、より正確な状況把握ができると期待しています。また、メンバーからの意見をそのまま受け入れるのではなく、他の視点も取り入れながらクリティカル・シンキングを活かして問題点を見極める重要性を再認識しました。 多角的な視点は? 日々の報告や相談を受ける際は、数字については多角的な分析ができているか、課題の洗い出しについてはMECEの観点で漏れがないかをひとつひとつ意識しています。必要に応じて分析の切り口を増やし、グラフ化するなど、手を動かしながら客観的に情報を整理しています。説明を行う際にも、これらの視点が十分に盛り込まれているかを確認し、分かりやすい内容を提供できるよう努めています。

クリティカルシンキング入門

データ分析で見える世界が広がる!

データ分析の最初の一歩は? これまでデータ分析を行う際、どこから手を付けてよいかわからず迷っている時間が長かったのですが、今後は「まずは分解して傾向を探ってみる」「何も見えなくても失敗ではない!」という姿勢でアグレッシブに取り組んでまいります。 情報共有で意識すべきこと 施策立案前の仮説構築、施策の効果検証、上司/同僚/取引先との情報共有や報告など、全体像を漏れなく把握し問題点を特定、改善策を検討し、データ検証し、関係者へ共有/報告するすべてのフェーズにおいて、今週の学習が生かせると感じました。MECE(モレなくダブりなく)は、マーケティングやPDCA改善に欠かせない思考であるため、常に留意して業務に取り組んでまいります。 可視化がデータ分析の鍵? データ分析においては、頭の中で考えるのではなく、まずは可視化できるもので状況を整理することが重要です。頭の中だけで整理したものでは抜け漏れが発生しやすいため、他者と共有する際のツールとしても活用できます。また、切り口に迷うよりもまずは分解をしてみて傾向を探ることが大切です。トライアンドエラーを通じて、分析方法の傾向を掴むことができます。 コミュニケーションで大切なことは? コミュニケーションにおいては、情報共有や報告の際に「モレなくダブりなく」伝えられているかを意識し、データ共有においても相手が理解しやすい加工を心掛けます。

戦略思考入門

経済性の本質をビジネスに活かすヒント

経済性の本質は? 3つの経済性については学んだ経験があったものの、実際にはその本質を十分に理解していなかったことに気づかされました。ゲイルの設問に沿って思考を重ねる中で、どのような場面でどの経済性が重要になるのかを具体的に意識しながらビジネスに活用したいと考えています。また、WEEK1から学んだ内容は、個々の要素だけでなく組み合わせることでより効果を発揮するのではないかと感じています。今後は、この組み合わせについても整理していきたいと思います。 業界分析のコツは? 現時点では、今週学んだ「経済性」が自身の業務にどのように活かせるのか、具体的なイメージがつきにくい面もあります。しかし、業務計画や中期経営計画の策定過程において業界分析を行う際、自社を取り巻く業界環境において優位性を持つ企業がどのような「経済性」を発揮しているのか、という観点で分析することは可能と考えています。そこで得た気づきを自社に取り入れることができればと期待しています。 次期計画の実践は? 来期の業務計画や次期中期経営計画に向けては、事業経済性が成り立つメカニズムや法則を活かしていくことを考えていますが、それらが成り立つための前提条件を整理することも忘れてはならないと感じています。本講座が終了した後、学んだ知識を再度整理し、「何を」「どのように」使えば競争優位性を発揮できるのかをしっかりと検討していくつもりです。

データ・アナリティクス入門

ギャップを明らかにする学びの道しるべ

現状はどう認識? 課題解決のためのデータ分析を行う際は、まず「what」「where」「when」「how」の観点で現状とあるべき姿の違い、すなわちギャップを明確にすることが大切です。特に「what」では、現状と理想との間にどのようなずれがあるかを捉え、その認識を関係者間で事前にすり合わせておくと、混乱なく分析を進めることができます。 手法はどう整理? 次に、ロジックツリーやMECEといった手法を活用することで、要素を段階的に整理し、状況を階層や変数別に切り分けることが可能です。実際の業務においても、初めて触れるデータに関して上長とのギャップ認識のずれから分析をやり直すケースがあったため、事前の共有が重要だと感じています。 結果はどう活かす? また、分析結果をもとに報告書や提言を作成する際は、その場しのぎの発想に頼らず、体系的にロジックツリーを活用して現実的な対策を検討すべきです。社員の意識調査のアンケートなどでは、まず「what」「where」「when」「how」に関する仮説を立て、その上で使用項目の選定とデータ分析に入るプロセスが理想的です。 対策はどのように? さらに、社内教育後の報告書で今後の取り組みを提案する際には、すぐに実行できる対策と時間を要する対策に分類し、複数の段階に分けて具体的な打ち手を検討することで、実現可能な内容を選定することが求められます。

クリティカルシンキング入門

見えるから伝わる!視覚資料のヒント

視覚手法は有効? 相手に何を伝えたいのかを整理した上で、グラフ化や文字のフォント、色づかいといった視覚的手法を活用することの重要性を再認識しました。これまで日常のプレゼンテーションで実施してきた手法も、実際にその効果を見直す機会となりました。グラフの種類によっては伝えたい内容がより効果的に伝わるものもあれば、逆に伝わりにくくなってしまう場合もあるのだと感じました。また、文字の装飾についても、その効果を意識して丁寧に活用することで、より分かりやすい表現が可能になると実感しました。 会議資料はどうする? 今後は、事業戦略会議資料や事業計画のスライドにこれらの知見を活かしていきたいと考えています。会議資料では、期の初めから時間経過に伴い売上や利益率が変化していく様子を示し、伝えたいポイントを明確に強調することで、資料全体がより分かりやすくなると思います。事業計画においては、過年度との比較や現状分析から次年度以降に注力すべき分野、来期の目標など、視覚的に理解しやすい丁寧な資料作りを心掛けていきたいです。 改善点は何だろう? また、これまで作成してきた資料を振り返り、改善点を見つけ出すことも重要です。伝えたい内容に沿った順序でグラフや図表を配置し、強調すべき箇所には適切な装飾を施すことで、視覚的な訴求力を高め、読みやすく最後まで関心を引き続けられる資料にしていきたいと思います。

戦略思考入門

視野を広げる戦略的思考のススメ

意見対立の要因は? 方針を定め、戦略を決める際に、各事業の意見や目的が異なるため、立場上の意見対立が生じることはよくあると感じました。実務に追われるあまり視野が狭くなることについても、自分自身にも覚えがあり、特に印象に残りました。適切な戦略を立てるには、定量的なデータと根拠をもとに各方面の意見を参考にすることが重要だと思います。また、思考だけで整理しようとすると混乱や抜け漏れが起きることが多いため、フレームワークを活用して論理的に組み立てることが必要です。 戦略の実態は? 現在、自分は戦略を考える立場にはいませんが、「自分の部署で取り組んでいる業務が会社にどのような影響を与えるのか」を常に意識しながら業務を進めていきたいと思います。上層部からの戦略をただ受け入れるのではなく、その戦略がどのような意見や現状をもとに立案されたのかを自分なりに分析し、「自分ならどうするか」を考えながら取り組んでいきたいです。 フレームの壁を感じる? フレームワークを実際に使用したことがないため、概要は理解できても実務に生かせるか不安を感じています。そこで実務でのフレームワークの使用頻度を増やし、視野を広げる試みをしたいです。施策を立案する機会が多いため、KGIやKPI達成のために「なぜそれをやるべきなのか」をフレームワークで整理し、納得してもらえる提案ができるようになりたいと考えています。

データ・アナリティクス入門

データ分析の本質を再発見!

分析と整理の違いは何か? 「分析」、「収集」、「整理」はそれぞれ異なる作業です。データ整理で分析が終わることもしばしばあり、比較対象があいまいになることもあります。また、見せ方に時間をかけすぎると、「相手に伝えたい」という本来の目的が不明瞭になることが多々あります。これは、「分析とは比較である」ことや「目的に立ち返ること」がしばしば抜け落ちがちだからではないでしょうか。楽な方に流れる思考や、目に見える分かりやすいものに飛びつきやすいバイアスに引っ張られる癖があります。自分の特徴を含めてこれらをしっかり俯瞰して整理しておかないと、学びの方向性やその捉え方がずれてしまう可能性もあると感じました。 常に数値を更新する重要性 販売状況や市況状況、社内状況の分析を進める中で、過去の基準や初期値がたびたび変更されてきました。分析が比較である以上、常に更新された数値のみが注目されることが多いです。このような状況では正確な分析ができず、意思決定に繋がらないと感じています。これはとても危険なことかもしれません。 データ整理はなぜ重要か? 様々な分野で目的とされることを視野に入れ、使用されるデータの洗い出しを行います。比較するためにも整理が必要ですので、いつでもデータを抽出できるよう、整理を行うことが重要です。整理された状態から、それぞれの目的に合わせた比較基準を設計することが求められます。

データ・アナリティクス入門

ギャップに挑む学びの一歩

問題の本質をどう捉える? 問題解決プロセスについて学んだ内容は、まず「ありたい姿」と現状を比較し、そこに存在するギャップに着目する点から始まります。その上で、問題を構成する要素に分解し、ロジックツリーを用いながら要素間の関係を整理していく方法を学びました。ここでは、MECEの原則を意識しながら、WHAT、WHERE、WHY、HOWといった各視点で問題を詳細に捉えていくプロセスが重要です。特に、どこに問題が潜んでいるか(WHERE)の特定が解決への大きな手がかりとなります。 広告関連の要因は? たとえば、広告効果を測るデータで前回のCPと比較し、数値に大きな乖離が見られる場合、このプロセスは有効に働きます。その際には、広告以外の宣伝活動があったか、テレビで取り上げられたか、他社が類似のCMを始めたか、または在庫の問題がなかったかなど、さまざまな要因を洗い出して、どうすれば問題が解決できるかを検討することが求められます。 部門へ依頼する理由は? 現状では、業務スコープの中でデータが正しく取り込まれ、出力される段階で分析が終了してしまっていることが多く、結果としてその分析作業は別の部門に依頼しているケースが見受けられます。今後は、アナリストとしての視点を強化し、データを直接営業チームに提供できるよう、問題解決プロセス全体に対する理解と取り組みをさらに深めていきたいと感じました。

データ・アナリティクス入門

データ分析で見つける新たな学びの価値

代表値の意義って? 代表値は、大量のデータを分析して大まかな実態を把握する際に重要です。特に、単純平均を用いるときには標準偏差も算出し、データのばらつきを確認することで、異常なデータを見つけることができます。グラフを比較・解釈し、仮説を立てることで、次の分析段階の方向性が明確になるのもポイントです。また、幾何平均は成長率や変化率の平均を求める際に用いることが適しています。 ターゲットをどう掴む? 競合や生活者ニーズを把握するため、製品購入者の年収や性別、年代、世帯人数を抽出します。そして、各製品のターゲットや、どのような生活者にどの製品が刺さるのかを理解するために、膨大な製品数から単純平均と標準偏差を用いて概要を捉えた後、詳細なデータ分析を行います。 販売戦略は何が鍵? さらに、注力ブランドの選定では、プロモーションや割引なしで販売好調な製品は、商品力が高いと考えられるため、これらを拡充したいと考えます。販売好調な製品の優先順位を決める際にも、幾何平均を基準の一つにすることが考えられます。 分析の流れは? 全体を把握するためには、まず代表値を算出し、その際にデータの散らばりを確認します。その後、詳細のデータを分析します。データ分析は「何を見たいのか」により比較対象が異なるため、この点を整理しつつ仮説を立てることが大切です。この流れを習慣化することが望ましいです。

データ・アナリティクス入門

問題解決のステップでビジネス力向上!

問題解決のステップとは? 問題を解決する際には、ステップごとに考えることが重要です。やみくもに案を出すのではなく、状況確認や原因特定、解決策の検討といった観点に分けて洗い出すことが求められます。問題解決には二つの方向性があります。現状をあるべき姿に戻すことと、望む姿へのギャップを埋めることです。このギャップを定量化することが鍵となります。 プロモーション戦略にロジックツリーを活用 MECEに考える際の分解方法として層別分解と変数分解が使われ、ロジックツリーを用いて問題を分解すると優先すべき課題が明確になりやすくなります。これを、来年度のマーケティングプロモーション戦略を立てる際に活用しようと考えています。 施策の振り返りとギャップの活用法 まず今年度のプロモーション施策を振り返り、現状とあるべき姿のギャップを見て原因を考えます。そして、来期のありたい姿を考え、それに向けたギャップをどのようにアプローチするかを検討します。その際、分析にロジックツリーを活用する予定です。 チームで行う効果的な振り返り メンバーそれぞれに現状のデータと理想の姿のデータを出してもらい、そのギャップを見てチームで理由を検討します。振り返りを行ったうえで、有効だった施策、継続すべき施策、止める施策を検討し整理します。そして、会社の方向性に合わせて来期の施策を練り上げようと考えています。

戦略思考入門

フレームワークで未来戦略を描く

戦略フレームワークって何? 戦略を考える際に用いられるフレームワークについて、調査や分析を通して抜け漏れや重複なく問題点を洗い出し、対策を講じる事例が存在することを理解しました。全く知らなかったわけではありませんでしたが、ワークや動画を何度か視聴することで理解が深まったと感じています。 成長戦略はどう考える? 日々、組織の成長を求められる環境下で働く中、自分なりの戦略を立てることが十分にできていないという現状があります。具体的には、組織内の強みや弱みは整理できているものの、競合他社の分析が不足しているため、今後はフレームワークを活用して体系的に分析を進めていきたいと考えるようになりました。 フレームワーク、使い分けは? また、社内ではフレームワークを積極的に使う人とそうでない人が混在している現状があります。分析の過程が説明される機会が少ないため、今後はフレームワークの考え方に注目し、他者の意見やプロセスに興味を持って話を聞こうと思います。 分析で未来は見える? さらに、3C分析やSWOT分析を用いて、自組織の強みや弱みの洗い出しと、競合企業の調査分析に取り組むつもりです。加えて、既存顧客へのアンケートやクライアントからの提案依頼、提案に対するフィードバックなどの情報収集を通じて、顧客ニーズについても改めて整理し、分析を深めたいと思います。

データ・アナリティクス入門

現象を超えて問題の根本に向き合う方法

問題原因をどう特定する? 問題の原因を明らかにするためには、プロセスを細かく分解することが重要です。そして解決策を検討する際には、複数の選択肢を洗い出し、その根拠に基づいて絞り込むことが求められます。 幅広く解決策を模索するには? 私の癖として問題と認識している点は、現象に焦点を当ててしまうことです。このため、なぜそれが問題なのかをさらに分解整理し、その構造を明らかにすることが必要です。その上で、解決策を思いつきや経験で狭めてしまわず、幅広く検討し、なぜそうするのが良いのかを考え実行し、分析することが重要であると感じました。 業務改善に必要なフローは? 具体的な業務としては、説明資料の作成や土地の探索、収支検討などが挙げられます。これらの部分で改善を図り、成果に結びつけるためには、業務フローや仕事上のプロセスを整理・分解し、成果に結びつく打ち手を検討し実行した上で、さらに改善すべき点を検討することが不可欠です。 データ活用の重要性とは? また、データを収集する経験を深めることも重要です。日頃から意識的にデータを取ることで、どのようにデータが業務に効果を与えるかを考えることができます。説明資料を作成する際には、作り込みすぎずにスライドのパターンをいくつか作成し、A/Bテストの要領で部内や課内でフィードバックテストを行うことも推奨されます。

「分析 × 整理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right