アカウンティング入門

オリエンタルランドで探る決算の秘密

オリエンタルランドの視点は? 今回、オリエンタルランドを題材に、P/L(損益計算書)とB/S(貸借対照表)を読み解くワークに取り組みました。まず、事業活動を考える際に、①顧客や企業、②提供価値、③価値提供のための活動、④経営資源といった要素を仮定し、それに基づいてP/Lの売上や売上原価、B/Sの資産を具体的に整理しました。このフレームワークは非常に分かりやすく、今後も活用していきたいと感じました。 売上はどう計上される? 売上については、想定通りアトラクションやショー、商品販売などの順で計上されていました。しかし、オリエンタルランドの事業セクションが分かれているため、どこまでを同社の売上として扱うかという点は検討の余地があると感じました。一方、売上原価に関しては、商品原価は想定どおりでしたが、同社の場合は人件費、減価償却費、施設更新関連費、ロイヤリティなども計上されていることに驚きました。一般企業では、人件費は販管費に計上されるため、この違いが印象的でした。 人件費の扱いはどう変わる? また、人件費の扱いに関して調べると、売上原価の製造費と販管費における販売費、一般管理費、研究開発費で分類されるのが一般的であることが分かりました。こうした知識を通して、財務3表の見方が変わり、各項目がどのような経営判断につながるかを考える良い機会となりました。 業界応用はどう考える? さらに、フレームワークを他の業界に応用する際には、顧客の特性や利用シーンなど具体的な側面に注目する必要があると感じました。売上原価と販管費の違いが粗利や営業利益にどのように影響を及ぼすかを理解することで、経営判断におけるコスト構造の分析にもつながると考えています。 実践での説明はどう進む? 今後は、この知識をもとに、実際の面談や決算報告の際に、事業活動とP/L、B/Sとの関連性を具体的に説明できるよう努めたいと思います。また、業界や同規模の企業との比較分析を通じて、より深い理解を得ることを目指しています。仕事以外では、複数の決算報告書を題材に事業活動を整理し、自分なりにP/LやB/Sを読み解く練習を続け、実際のお客様への説明機会も活用して理解をさらに深めていきたいと考えています。

アカウンティング入門

B/Sで読み解く企業の健康診断

B/Sってどう読もう? まず、B/S(バランスシート)の基本的な読み解き方について学びました。左側に資産が、右側に負債と純資産が記載され、流動性の高い項目から順に並んでいることから、B/Sは企業のお金の使い道と調達方法、そして健康状態を確認するための重要な表であると理解しました。 収益差をどう捉える? また、ある鉄道事業と、ゲームソフトを主たる事業とする収益体質の比較を通して、固定資産の多さと収益構造の違いを検討しました。一概にどちらが優れているとは言えないものの、純資産が多く借入が少ない側は、事業の機動性が高いと感じました。 カフェ事例で学べる? ケーススタディでは、あるカフェの事例を用いて、B/Sの読み方をより実践的に学びました。そのカフェでは、自己資金に援助金を加えることで純資産を増やし、さらに銀行からの3年の長期借入れを固定負債として計上する手法が紹介されました。加えて、コンセプトに沿った土地や建物、内外装工事、調理器具、インフラ権利なども資産に含める点に気づかされました。 資金調達のリスクは? また、計画通りに資金を調達できなかった場合のリスクについても検討し、資金調達が不十分なことでコンセプトの変更や事業への影響が生じ、最終的には倒産リスクにつながる可能性があることを認識しました。もしコンセプト通りに事業が進められないのであれば、事業計画の再立案が必要になり、その結果、事業開始が遅れるリスクもあるという理解が深まりました。 投資と原価、何を感じ? さらに、投資や固定資産管理、原価の償却費の影響は日常業務で頻繁に関わるため、学んだことを活かして自分なりに投資が事業に与える影響を仮説立てしながら実務に落とし込みたいと考えています。一方で、資金調達については機会が少ないため、B/Sを確認する際に純資産や長期借入金に注目し、仮説を構築する習慣を身につけたいと思います。 前回と今回はどう結ぶ? 最後に、前回のP/L学習と今回のB/S学習を通して、自社や日々の業務における具体的な課題が見つかっているかどうかをメンバーに問いかけ、成功事例や具体的な取り組みについて意見交換を進めていくことも大切だと感じています。

マーケティング入門

受講生の声に未来のヒント

自社魅力をどう分析? 既存のリソースを活用して新しいビジネス展開に取り組む力が求められます。その際、まずは顧客視点から自社の魅力を分析し、ライバル企業を狭い業種ではなく、広い服飾業界全体として捉えることが大切です。 製品方針は決まった? また、時代の変化に対応した製品開発と、要件定義を明確にした上での開発方針の策定が不可欠です。これにより、より実用的な解決策が生まれる環境が整います。 潜在ニーズを発見? さらに、顧客自身が気づいていないニーズを掘り下げる手法として、行動観察や個人インタビューを実施することが有効です。潜在的なニーズを把握することで、本当に必要とされるサービスや製品の開発が可能になります。 製品名はどう選ぶ? 製品名については、親しみやすく覚えやすい上、製品との整合性がありユニークな語感を持つ名前が望ましいと考えます。名称がユーザーに与える印象も、製品の魅力を左右する重要な要素です。 顧客課題は明確? ペインポイント、つまりお金をかけてでも解決したい課題を見つけ出すことも重要です。単に「あればいいな」というニーズではなく、実際に顧客が投資を惜しまない課題に焦点をあて、機械に限らず工場全体の課題として捉え、顧客への訪問インタビューを通じて具体的な問題点を明らかにする必要があります。 数値で説得できる? 実際、課題の中には費用をかけて解決したいものと、そうでないものが混在しています。例えば、工場向けの大型機械の場合、金銭や時間、人手という具体的な数値で示される課題は、比較的解決に向けた投資が行いやすいですが、中小企業の場合、得られる利益を正確に算出するのが難しいこともあります。そのため、例えば古い機械を更新する際に新製品の処理速度が2倍になるという具体例を用い、1時間あたりの利益や4年間での費用回収シミュレーションを示すなど、数値で分かりやすく説明する工夫が求められます。 担当部門を再考? 最後に、製品名の決定については、どの部門が担当するかも再考の余地があります。従来は機械開発担当が決めるケースが多いですが、ユーザーと近い部門が名称選定に関わることで、よりユーザーに響く名前が付けられるのではないかと感じています。

アカウンティング入門

数字の裏側を読み解く学び

本業と全体はどう? PLには売上総利益、営業利益、経常利益といった項目があり、営業利益は本業で得られる利益を示す一方で、企業全体の収益性の判断には限界があることが理解できました。経常利益を見ることで、初めて企業全体の儲けを把握できるという点も納得できました。 PLから何が分かる? また、PL単体では細かい財務活動まで把握することは難しいものの、利益の出し方やコストが発生する時点、そして過去と比較して各割合がどのように変動しているかなど、全体的な売上・利益構造を大まかに捉えるための有用な指標であると感じました。たとえば、対照的なコンセプトを採用するカフェのPLを通して、弱みを他の部分の費用で補うという戦略があることを学びました。店舗が小さく、立地条件が厳しい場合、集客力を補うために広告宣伝費を多く割り当てる戦略が取られているという点は興味深かったです。ただし、PLだけではその背景にある出店経緯や戦略は把握できないため、併せて確認する必要があると感じました。 報告書はどう読む? 自社の利益報告書を読む際は、月単位や年単位での推移を丁寧に把握し、売上や利益の構造に変化がないか、儲けが増加しているのか減少しているのか、要因を明確にすることが大切だと考えています。 各店舗を比べる? さらに、業界の特性から、売上原価の比重が高い店舗と低い店舗が存在するため、各店舗の利益の出し方の違いを比較し、より効果的な利益向上策を模索する意欲が湧きました。自社内の各店舗のPLを詳細に比較することで、利益構造やコンセプトの違いが明確になり、そこから自社分析を経たうえで競合他社のPLも確認し、販管費や労務費、売上原価の占める割合の違いから、何を強みとして成長させ、どこに改善の余地があるかを検討することが求められると感じました。 改善提案は何? こうした分析を通じて、売上に対する各費目の割合や変化を正確に把握し、改善活動を次期の部門方針に反映させるとともに、管理側と店舗それぞれが取り組むべき課題を明確にする必要があると実感しました。自身の責任範囲内で具体的な改善提案を上司に示し、統括する店舗が改善活動に向けた大きな予算を確保できるよう検討していきたいと考えています。

データ・アナリティクス入門

細かい分析が未来を創る

原因をどう捉える? 問題の原因は、全体のプロセスを細分化して考えることで把握しやすくなります。原因を明確にするためには、各工程ごとに何が起こっているかを順を追って分析することが有効です。 解決策は何だろう? 一方、解決策を検討する際は、ひとつの案に固執せず、複数の選択肢を用意して比較することが大切です。判断基準を設定しておくことで、より説得力のある解決策にブラッシュアップすることが可能になります。また、本質的な施策を比較検討する際には、A/Bテストが有効です。比較したい要素を明確にし、他の条件をできるだけ揃えることで、テスト結果を効果的に実施策へ反映させることができます。 数値分析はどう見る? 事前の動画では、WEBマーケティングの分析においてアクセス数(ページビュー、ユニークユーザー、流入数)、サイト内行動(ページの回遊数、平均滞在時間、直帰率、再訪問率)、広告効果(クリック率、CPA)、および効果測定(コンバージョン)といった数値の重要性が紹介されました。現代のマーケティング環境では、顧客の購買体験がSNSの影響で複雑化しているため、マーケティングミックス(4P)の視点も必要不可欠です。 仮説はどう組み立てる? また、仮説の立て方については、まず知識を広げることで情報を耕し、そこからラフな仮説を作成するという大きな2ステップが重要だとされています。さらに、5Aカスタマージャーニーのフレームワークを活用することで、サービスとの出会いからファンづくりまでの流れを効果的に生み出すことが可能になります。 テストの効果は? 商品の活用状況が悪い場合や解約が増加しているときの対策としては、ポップアップでの案内や電話窓口の資料の強化といったパターンに頼りがちです。しかし、日常的にアプローチ(訴求面)のテストを実施しておくことで、急な数値低下に直面した際にも、事前のテスト結果を活かして迅速かつ効果的な対応が可能になります。現在、A/Bテストを実施している場面もありますが、担当者の発案に頼るのみで、年間で数回程度に留まっています。今後は、各施策の企画段階からテストの仕込みを意識することで、より計画的な改善が期待できるでしょう。

データ・アナリティクス入門

グラフ活用で成果を高める方法

グラフの読み方は? ■グラフの解釈と仮説の立て方 グラフを用いる際は、まず読み取りたい内容に合わせて最適な形式を選びましょう。グラフを観察する前に予測を立てることで、分析の方向性を明確にします。分析方法には、特徴的な部分を注目したり、複数のデータを比較して差異を見つけるなどのアプローチがあります。この過程で、解釈と仮説を同時に立てると効果的です。 R&Dチームの成果をビジュアル化する際には、チーム別に成果物の数をヒストグラムにし、偏りや詰まりを確認しましょう。この情報を基に各チームへのフィードバックを行い、改善につなげます。 データ表現の工夫は? ■ビジュアル化のヒント データビジュアル化では、代表値や散らばりに着目します。代表値の設定においては、データに応じて使い分けが重要です。 - 単純平均は、データ全体の総和をデータ数で割る方法で一般的に多く用いられます。 - 加重平均は、影響力の異なるデータに重み付けを行って平均を取る方法です。 - 幾何平均は、主に変化率や比率を扱う際に使用されます。 - 中央値は、外れ値に影響されにくいため、データの中心を把握する際に便利です。 さらに、散らばりを把握するためには標準偏差を用います。標準偏差はデータのばらつきを測る指標で、値が大きいほどばらつきも大きいことを示します。大きく逸脱したデータは重要なポイントかもしれないため、注意が必要です。 データが正規分布に近い場合、95%のデータが標準偏差の2倍以内に収まるとされています。この特性を活用して標準偏差を逆算する方法もあります。 最後に、プロジェクト参加者の満足度を測る際には、参加期間に応じた重みづけを行って加重平均を計算し、その結果を適切なグラフで示すことで満足度の傾向をわかりやすく伝えられます。 仮説検証の流れは? ■解釈と仮説の流れ まず、チームごとに成果物を数え、それを表にして視覚化します。次に、そのデータから予測を立て、詳細な解釈を行った上で仮説を形成します。この仮説をチームにフィードバックし、インタビューなどを通じて実態と照らし合わせることで、仮説を検証します。これにより、チームやプロジェクトのさらなる改善へと導くことができます。

マーケティング入門

学びがひらく未来への扉

セグメントは何がポイント? まず、セグメンテーションの切り口として、人口動態変数、地理的変数、心理的変数、行動変数の4つがあることを学びました。購買行動に差が出る切り口を意識することが重要であり、当社の観光コンテンツ配信事業では、アニメファンという趣味嗜好や行動特性を重視すべきだと考えています。 火付け役の意義は? 次に、1stユーザー(火付け役)の選定と普及要因の重要性について学びました。サービス設計においては、比較優位、適合性、わかりやすさ、試用可能性、可視性の5つの普及要因を押さえる必要があります。特に、AIDMAの各段階に合わせ、まずは注意を引くための可視性、次に分かりやすさで興味を喚起し、比較優位で魅力を訴求、適合性により導入意欲を高め、試用可能性を低いハードルで実現することを意識した設計に取り組みたいと考えています。 評価基準はどう違う? さらに、ターゲティングの評価基準として、Realistic Scale(市場規模)、Rate of Growth(市場成長率)、Rival(競合優位性)、Rank(優先順位)、Reach(到達可能性)、Response(顧客反応)の6Rについて学びました。各セグメントについて、代表ペルソナの課題に基づく市場規模や成長率、自社アセットとの親和性、チャネルを活用した到達可能性、そして顧客反応を具体的に評価することが必要です。 事業企画の狙いは? 今回の事業企画は、既存のコミックプラットフォームを活用した観光コンテンツ配信として、アニメファンに推し旅や推し消費の提案を行うものです。現時点で顧客課題の把握、ペルソナの定義、解決方向性の設定、課題の確からしさに関するインタビューが済んでおり、今後は以下のスケジュールで具体的な検証を進めます。 検証スケジュールは? 2月下旬の週には、セグメントごとの市場規模とコストの調査を行い、3月上旬にはその結果をもとに市場規模の判定とコスト試算を実施します。続く週には、優先すべき事業アイデア3つについて、解決策の適合性をインタビューを通じて確認し、3月中旬にこれらの成果をまとめ、未達事項を整理します。そして、3月末の審査会に向けた最終調整を進める予定です。

データ・アナリティクス入門

データ分析の目的を意識して成果を出そう

データ分析の目的は? 「①データ分析の目的を意識すること」と「②正しく比較するために条件を揃えること」の2つが特に印象に残りました。これまでの仕事では、目の前にあるデータを漠然と加工し、何か分かることがないかと試行錯誤しているだけだったと改めて感じました。 明確な分析の必要性を感じる 今後は「何のためにデータ分析するのか」「何が分かると嬉しいのか」を明確にした上で分析に取り組むつもりです。また、自分の悪い癖として「結論ありき」のデータ収集や分析を行う傾向があると自覚しました。具体例では、「●●●という結論を導くために都合の良いデータを探してくる」という方法を取っていましたが、それだと誤った意思決定に繋がる可能性があります。常に正しい条件でデータを比較することの重要性を強く感じました。 賃金制度の課題とは? ①新しい賃金制度の検討に活かしたい。自社の賃金制度に関する課題を明確にするためには、競合や労働市場との比較だけではなく、「現状の給与分布が自社の賃金制度の考え方に沿ったものか」、「自社の人事ポリシーに沿ったあるべき給与分布はどうあるべきかと現状との差異」を正確に比較したいです。 目的達成のためのツール選び ②新しいビジネスツールを導入する際の分析に活用したい。労働安全衛生関係の教育ツール導入を検討しているため、目的を明確にし、「目的を達成できるツール」を選定するための比較を実施していきます。 具体的に言うと、自社の賃金制度の課題を明確にするためには、競合他社や労働市場との年齢や等級ごとの給与比較は当然ですが、それ以外にも比較対象とする要素があるはずなので、漏れないように洗い出します。競合等と比較する際には条件をしっかり揃えることが大切です。また、ツール導入については「何のために導入するのか」「その目的を達成するために必要な要素は何か」「それぞれの要素の基準は何か」をしっかり考えて最適なツールを選びます。 継続的な評価が必要? ツール導入後の経時変化も確認し、継続使用を検討します。いずれの取り組みも、目的や比較対象がズレていないか、要素に漏れがないかを上司やチームのメンバーとよく議論しながら進めていきたいと考えています。

データ・アナリティクス入門

Whereが導く新たな学び

解決のステップは? 問題解決の4つのステップを意識することで、課題解決に向けた取り組みがより効率的になると感じました。今後は、最も重要なポイントである「Where」を意識して分析に着手していきたいと思います。業務においては、あるべき姿と現状とのギャップを、定量的な指標で示すことが大変有効だと印象に残りました。 総評はどう考える? 総評として、問題解決のステップを意識し、効率的なアプローチを追求する姿勢は素晴らしいと感じます。また、定量的な分析の重要性を理解している点も非常に大切だと思います。今後は、具体例を交えた検証により、さらに深い理解が得られるでしょう。 手法とデータは? さらに思考を深めるための問いとして、以下の点を考えてみてください。 ・問題の「Where」を意識する際、具体的にはどのような手法を用いる予定ですか? ・業務での定量的分析を強化するために、どのようなデータが必要だと考えますか? 今回学んだポイントを、実務に具体的にどのように応用するかもじっくり考えてみてほしいと思います。頑張ってください。 理想と現実は? また、「あるべき姿」と「現状」のギャップについては、①正しい状態に戻すための問題解決と、②ありたい姿に到達するための問題解決があると認識しました。たとえば、以下のようなケースが想定されます. ・売上販売目標の場合  → 100%達成に届かない状況と、120%達成を目指す状況がある ・製品シェアの内訳の場合  → シェア80%を目指す場合と、シェア100%を目指す場合がある ・KPI Activityの場合  → 会社の指標を順守する場合と、それを大きく上回る目標を設定する場合がある 比較で見極める? さらに、分析にあたっては「分析とは比較なり」という考え方も大切です。具体的には、社内の数字の良い組織や競合他社と比較することで、現状とあるべき姿を明確にすることが重要です. また、あるべき姿と現状は、定性的な情報だけでなく、定量的な情報としても示すことが重要です。定性情報を定量化するために、数値によるスコア化(たとえば0、1、3など)を統一した条件で設定する手法も有効だと感じました。

データ・アナリティクス入門

重要性を再確認しよう!データ分析の基本と新発見

今週の学びの重要点は? 今週の学習を通じて重要だと感じた点は以下の3つです。 まず、分析の目的を意識することの重要性です。現在の業務においても、データを加工したりダッシュボードを作成することに満足せず、あくまで何を導き出したいのか、何を証明したいのかといった初期の目的を常に意識するように努めています。この点を再確認し、今後も目的を忘れずに分析を進めることを誓います。 グラフ作成の新たな発見とは? 次に、グラフのX軸やY軸の配置が読み手に与える印象を大きく左右する点について、新しい発見がありました。これまではグラフの種類による印象の違いは認識していましたが、X軸やY軸の置き方にも注意を払う必要があることを実感しました。これからは、この点を意識してグラフを作成していきたいと思います。 比較分析の基本に戻る必要性 最後に、分析は比較であるという基本に立ち返ることです。業務では前年や前月など、期間軸による比較が多いですが、例えば国籍や予約経路など、他の軸での比較も意識することで多角的な分析が可能になります。これを踏まえ、実践に取り組んでいきたいと思います。 ホテル予約サイトでの活用法は? 現在、ホテル予約サイトのプラットフォーム運営に携わっており、登録施設の売上最大化のサポートをコンサルティングしています。日々の予約データを以下のように活用することで、より精度の高い提案ができると考えています。 - どの国籍からの予約が多いか、平均宿泊日数が長い国籍はどこか - 何月の予約が多いか - 売れている価格帯はどれか データ比較をどう進める? これらのデータを基に、最適な提案を施設に行いたいと考えています。この学びは現在の業務に直結する分野であるため、まずは実践を心がけます。そして、「比較」を意識して、これまで考えていなかった視点からの比較も試みたいと考えています。具体的には、自社内データや他社との比較だけでなく、政府の提供するデータとの比較も行ってみようと思います。 また、前期のナノ単科同様に他者への共有も積極的に行います。学びをチームメンバーに説明することで、より深い理解と正確な認識を確立できるため、この点も重視していきます。

データ・アナリティクス入門

仮説と実践が創る成長の軌跡

検証プロセスはどう進む? まず、検証のプロセスは「問題の明確化(what)」「問題箇所の特定(where)」「原因の分析(why)」「解決策の立案(how)」という4段階に分解されています。これにより、検証を行う側も結果を伝える側も、内容を分かりやすく把握することができます。 仮説は何で生まれる? 次に、仮説検証では、なぜ問題が発生するのかという問いに対して、最初は考えを絞らずに複数案を出してみることが重要です。その際、フレームワークを活用して、情報が抜け落ちたり重複したりしないようにすることで、双方にとって理解しやすい検証が可能となります。 比較はどう整理すべき? また、比較検証を行う際は、必ず同じ条件下で情報を整理することが求められます。同じ基準で比較しないと、結果に誤差が生じやすいため、グルーピングの段階から条件を揃える工夫が必要です。 知識のアップデートは? さらに、一般常識や最新のニュースに目を向け、常に学び続けることが大切です。自分の判断基準が古く、発展しなくなると検証能力は向上しません。 モノづくりの課題は? 普段取り組んでいるモノづくりの研究・開発現場では、商品コンセプト、技術・性能・品質、コスト、人材育成など、さまざまな分野の問題を分解して検証しています。問題が数多く存在するため、優先順位をつけることが重要です。自分ひとりで作業するわけではなく、誰もが納得できるような優先順位の付け方や見せ方に工夫を凝らしています。現在は、特にコストの問題を最優先して取り組んでおり、若手には楽しい商品開発の役割を担ってもらっています。 成果をどう伝える? 仮説を立てながら、ChatGTPの助けを借りつつ情報を整理・検討するプロセスは非常に有意義です。その結果を他者に伝え、納得が得られるかどうかを検証の一つの指標としています。 出張準備は万全? また、7月から8月にかけて海外出張を予定しており、その準備として自分の考えを整理し、誰もが納得できるストーリー作りと、事実に基づいた情報収集に努めています。出張先で提示した問題定義に対する回答を、秋頃に成果物として検証する計画です。

データ・アナリティクス入門

検証と比較で広がる学び

分析の目的は何? 分析の本質は比較にあると実感しています。何のために分析を行うのか、もう一度立ち返り、プロセス、視点、アプローチを意識することが大切です。複数の仮説を立て、様々な切り口から問題にアプローチすることで、見落としがちな問題点も網羅することができると感じます。 データ分布はどうなって? 全体像を把握するには代表値の比較が有効ですが、同時にデータの分布がどのようになっているかもしっかりと確認する必要があります。抜け漏れがないか、条件反射に頼らずに注意深くチェックすることが肝心です。また、標準偏差の変動は、株のボラリティに似た感覚で捉えています。 検証の手順は? 仮説は何度も繰り返して検証すべきで、すぐに答えを出さず、切り口に抜け漏れがないかを再点検することが重要です。問題点を明確にするためにはデータを見える化することが効果的で、これによって次のアクションやステップを取りやすくなります。データの判断目的やその見せ方にも気を配る必要があると感じます。 打ち手の成果は? 特に、ある動画で打ち手の費用対効果について触れられていたことが印象的でした。これまで「どの打ち手を優先するか」が重要だとは考えていましたが、実際にその打ち手を実施した際のリターンまで考えるという視点は、私自身の経験上、一度も考えたことがありませんでした。ファイナンスの考え方であり、その入り口ともなる新たな発見に、深く感謝しています。 時間の使い方は? また、他の社員より明らかに時間を要している業務があると感じています。正直なところ、その業務が自分に向いていなかったり心理的に好ましくなかったために、時間がかかると言い訳をしていた自分がいました。しかし、他者との比較を通して、行動前の準備段階で何か問題があるのか、結論から逆算するなど、対策案の仮説やシミュレーションを実際に試している最中です。 改善策はどうする? 現状をしっかりと把握し、問題点を見つけるとともに、どのような状態にすべきかを工程を逆算しながら検証しています。苦手な業務の改善につなげるため、うまくいかなかった場合はさらなる仮説を立て、柔軟に対応していくつもりです。

「必要 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right