データ・アナリティクス入門

データ分析を活用して目標達成!

振り返るべき分析の本質とは? ライブ授業を通して、以下の3点について再確認できました: 1. 分析の本質は比較である。 2. 問題解決の4つのステップ(What-Where-Why-How)全てにおいて仮説思考が重要である。 3. やみくもに注意! データ分析における重要ポイント データ分析において覚えておきたいポイントは以下の通りです: まず、何のために分析するのかという「目的(問い)」を押さえ、その問いに対して「仮説(ストーリー)」を立て、その上で「データ収集」をし、分析を通して「仮説検証」を行うことが重要です。データ収集方法は既存のものを「リサーチ」、新たに必要なデータは「見る」「聞く」「行う」で収集します。 次に、分析の際に必要な視点として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」があり、アプローチ方法として「グラフ」「数字」「数式」があります。 さらに、比較の前提となる"複数"と"網羅性"を担保するためにフレームワークを利用することが有効です。 長期的な目標設定の方法は? 以上を踏まえ、データ分析をハイサイクルで繰り返すことで、客観性と納得性が高い本質的な課題解決や新しい目標設定が可能となることが分かりました。 また、GAiLを通して「ありたい姿(現時点での目指す方向)」をあらためて描くことで、自分の目標が職場だけでなく、公私に共通するものであると気づきました。ありたい姿を実現するには、「ゴールを設定する」「やることとやらないことを決める」「整合を取る」ところでデータ分析を活用したいと思います。そして、公私において必要となるコンセプチュアル・スキルとヒューマン・スキルの一つであるコーチング力に注力し、ビジネス・フレームワークを身に付けていくことで、中期事業計画の策定で高度な専門性を持つことを目指します。 即断即決の精度を上げるには? 中期事業計画の策定に向けて関係者と共に戦略を自らのものとして進めるために、ビジネスの定石・フレームワークを活かしつつ客観性と納得性を担保し、最後にはこれまで培った集合知を総動員した発想の飛躍に挑戦したいと思います。 経験と勘による即断即決が多くなっていることに気づきますが、それに頼らずビジネス・フレームワークとコンセプチュアル・スキルを用いて自ら検証することの重要性も感じています。即断即決する前に深く考える時間を持ち、その考えをメモに書き出してデータ分析をもとに検証する習慣をつけたいと思います。これからも即断即決が必要な場面はありますが、その精度を上げ、発想の飛躍ができるために、視座を高く持ち、視野を広くもって先輩や上司、仲間と共に高め合える関係を継続していきたいと考えています。

データ・アナリティクス入門

振り返りで気づいた仮説の力

仮説とは何か? 仮説とは、ある論点に対する仮の答え、もしくは分からない事に対する仮の答えを指します。仮説には主に「結論の仮説」と「問題解決の仮説」があります。結論の仮説はある論点に対する仮の答えであり、問題解決の仮説は問題解決のプロセスに沿ったものです。この場合、What(何が問題か)、Where(どこで問題が発生しているか)、Why(なぜ問題が起きているのか)、How(どう解決するのか)の観点で考えます。 仮説を持つことの価値とは? 仮説で考えることの意義は以下の通りです。 1. **検証マインドの向上と高まる説得力**: 仮説を持つことは検証作業とセットで動くことを意味します。 2. **関心・問題意識の向上**: 関心や問題意識のないところには仮説は生まれません。日頃から自分の仕事に関連して仮説をもつように心がけることが重要です。 3. **スピードアップ**: まず自分なりにあらゆる情報を総動員してこれがいいのではないかと仮説を持ち、テスト的に実施しながら検証する手順を踏むことで、スピーディに対応できます。 4. **行動の精度向上**: 仮説検証のサイクルを早く回すことで、それに伴う行動の精度が向上します。 データ収集の重要性 原因の仮説を立てる際には、仮説を検証するためのデータを集めます。データには既存のデータと新しいデータがあります。既存のデータとしては、自社内にあるデータ、一般公開されているデータ、パートナー企業が取得しているデータなどがあります。新しいデータとしてはアンケート(広くデータを収集)、インタビュー(狭い範囲で深く収集)があり、追加で調査が必要な箇所に絞り、新たなデータを取ることが重要です。 仮説を立てる際の注意点は? 複数の仮説を立てる際には、以下の点に注意します。 - **仮説同士に網羅性をもたせる**: 何を比較の指標とするか意図的に選択し、何を見ればよいのか、何と比較したらいいのか意図をもって考えます。 - **データ収集する際の注意点**: 誰に聞くか(意味のある対象から聞けているか)、どのように聞くか(比較するためのデータ収集を忘れない。反論を排除する情報にまで踏み込めているか)に注意します。 フレームワーク活用のすすめ 仮説を考える際には、3C(市場・顧客、競合、自社)や4P(商品、価格、場所、プロモーション)のフレームワークを活用します。また、仮説検証のスピードを上げ、仮説検証のサイクルを早く回すことも重要です。 仮説の立て方が分からない方には、仮説を考える意義や、日頃から自分の仕事に関連して仮説を持つように心がけることが有効です。

データ・アナリティクス入門

正しい思考で磨く自分の軌跡

正しい思考は何? 沢山のフレームワークが出てきましたが、本質は正しい考え方や思考方法を知り、学び、定着させることだと感じました。習得するためには継続的な取り組みが必要で、これまでノートにまとめたメモを見返しつつ、改めてここに整理してみました。 仮説をどう作る? 【仮説の構築】 まず、問題を明確にする(What)、問題箇所を特定する(Where)、原因を追求する(Why)、そして解決策を立てる(How)のプロセスを大切にしています。仮説を立てる際には、複数の可能性を網羅し、一つに決め打ちしないことを意識しています。 また、取り巻く環境を3C(Customer:市場や顧客、Competitor:競合、Company:自社)の視点で考え、自社の状況は4P(Product:製品、Price:価格、Place:場所、Promotion:販促手法)で検討することで、より具体的な分析が可能になります。 情報の取り方は? 【データ収集】 既存のデータや一般に公開されている情報、パートナーの所持するデータを確認することから始め、さらにアンケートやインタビューなどで新たに情報を集める取り組みを行っています。誰に、どのように情報を収集するか、また比較できるデータを忘れずに取る点が重要だと意識しています。 どう考えを広げる? 【仮説思考】 仮説とは、ある論点に対する一時的な答えです。結論や問題解決のための仮説を、知識を広げ多角的な視点から検討することで、説得力と行動の精度を高めることができます。思考実験や「なぜ?」を繰り返すなど、ロジックツリーを活用しながら多様な仮説を生み出し、常に発想を広げる努力が求められます。 仮説はどう検証? 【仮説の検証】 仮説と検証はセットで考え、投資額や巻き込む人数、不確実性といった観点から必要な検証レベルを見極めます。初期段階で枠組みを設定し、定量・定性のデータを収集・分析することで、より客観性のある仮説の肉付けや再構築を行うようにしています。 市場をどう見る? 【マーケティング・ミックスとその他の分析手法】 製品戦略、価格、流通、プロモーションのそれぞれの側面を4Pで検証することに加え、5Aカスタマージャーニーを活用して現代の顧客行動を捉えています。また、クロス集計分析を通して、全体の傾向や特徴、特異点を把握し、次の打ち手を考えるための洞察を得ることも重視しています。 実行にどう生かす? 最終的には、これらのフレームワークや手法を日常的に活用することで、検証マインドを鍛え、チーム全体に浸透させる意識を持つことが、戦略の立案や実行に大きく寄与すると実感しました。

データ・アナリティクス入門

データ分析の失敗談から学ぶ成功法

データ分析における意思決定とは? ビジネスにおける意思決定において、データ分析は非常に重要な役割を果たします。数値を可視化することで先入観にとらわれずに合理的な判断が可能となります。また、比較の際には、条件を揃えた上での分析が重要です。目的を明確にすることで、何を明らかにしたいのかという背景を理解し、分析の効果を最大化することができます。 失敗をどう教訓に活かすか? 日々の業務ではこれらの点を意識してデータ分析を行っているつもりでしたが、振り返ってみるとできていないことも多く、過去には目的を明確にしないまま分析に臨んだ結果、時間を無駄にして失敗に終わった経験もあります。しかし、この失敗を教訓に、分析の依頼者に対して背景や目的を確認することで、効率的なデータ抽出と適切な要因分析ができ、最終的には施策の成功に貢献することができました。この経験を通じて、分析の初期段階で目的を明確にすることの重要性を再認識しました。 今後の分析に向けた意識改革 現在の分析経験はまだ少ないと感じており、依頼されたものだけでなく自ら事業の課題に対してデータ分析を行い、積極的に提案していきたいと考えています。ウェブサイトの行動履歴ログを基にした流入、離脱、コンバージョンの分析を通じて、カスタマーの動きを把握し、学んだ知識を活かす場面は増えそうです。 依頼者とのコミュニケーションの重要性 過去には依頼者とのコミュニケーション不足で目的が不明確なまま進め、失敗した経験もありました。今後は、何を明らかにするための分析なのかを明確にし、依頼者と密にコミュニケーションを図ることで認識のすり合わせを心掛けます。また、データ抽出の間違いで時間を無駄にした経験から、目的達成のために必要な情報を収集し続ける努力を欠かさないようにします。さらに、分析結果を言語化する際には、簡潔かつ構造的にまとめることを目指します。 スキルの向上と今後の展望 これからは、データ分析に必要な情報を依頼者とのコミュニケーションを通じて収集し、過去の失敗や学んだ知識を活かして、目的の明確化、仮説の設定、納期、データ抽出の定義など、依頼者とすり合わせを行い、認識の齟齬をなくすよう努めます。依頼者が求める分析の目的を見失わないように、すり合わせた内容を基にして、全体像を把握するデータ抽出から始めるつもりです。分析結果は言語化し、依頼者と密にコミュニケーションをとり、振り返りを行います。 学んだ知識をもとに行動を重ね、情報収集やデータ抽出方法のツール、プログラムの習得などのスキルを磨きつつ、事業の課題に対して正確なデータ分析レポートを提供できるよう努力を続けていきます。

戦略思考入門

舞台裏に見る学びの秘密

費用構造を理解した? 固定費と変動費の構造や稼働率の関連性を実践演習を通して学んだ結果、単に生産数量を増やすだけではなく、費用の内訳をしっかり理解する必要性を実感しました。また、物事を一面的に捉えるだけでは、意図しない逆効果が生じる可能性があるため、多角的な視点で根本的な原因を見極める重要性も学びました。 経験曲線を再考する? 経験曲線の傾きは業界ごとだけでなく、企業ごとにも異なるという点が非常に興味深かったです。日々の業務に対する姿勢や改善への取り組みが習熟効果に大きく影響するため、ルーチンワークであっても常に意識して改善策を考える必要性を改めて感じました。 異動で何を得た? また、異動などで新たな業務に取り組む中で、これまでに培った知識や人とのつながりが大きな力になることを実感しました。これにより、知らず知らずのうちに範囲の経済性を体験し、実践していることに気づく機会となりました。 技術の視点は新しい? ハードウェア開発を主な業務とする中で、ソフトウェアが短期間で爆発的に普及するというコンセプトは全く新鮮でした。これまで、ソフトウェアはハードウェアの性能を最大限に引き出す役割と捉えていましたが、今後はハードウェアの役割についても新たな視点で検討していく必要性を感じています。 規模経済をどう考える? 自社の自動車製造においては、規模の経済性を活用することで現行の価格が実現されていることを再認識しました。多品種少量生産であっても、生産負荷や作業工数、生産設備の平準化に注力しなければ、規模の経済の恩恵を受けることは難しいと考えます。そのため、製造工程における設計や仕様の選定を意識して、今後の開発や運用に活かしていきたいと思います。さらに、新技術の研究開発においては、製造面での規模の経済、研究開発面での範囲の経済の両方を検討し、また市場参入後には習熟効果の向上に向けたノウハウの蓄積と改善策の実施も併せて進める予定です。 最適なバランスは? 規模の経済を正しく活用するためには、単に生産数量を増やすことだけでなく、製法や調達方法などあらゆる要素に目を向け、最適なバランスを追求することが重要です。さらに、既存のノウハウを活かしながら、異なる分野の常識と自社の常識とを比較検討することで、一見非常識に思える中に有望なアイディアが隠れている可能性もあります。今後は、こうした多角的な視点をグループメンバーとのディスカッションの中で共有し、改善策の議題として積極的に取り上げていきたいと考えています。

リーダーシップ・キャリアビジョン入門

日常対話で築く信頼の成長

チーム運営の基礎は? 日常的なコミュニケーションの積み重ねが、チーム運営の基礎であり極めて重要であるということを改めて実感しました。 新たな視点は? WEEK1で描いたリーダー像と比較して、いくつかの新たな視点を得ました。まず、従来はチーム内での最適行動に重点を置いていましたが、外部環境や経営視点を理解し、自分のチームの役割や方向性とどうつなげるかが重要であると気づきました。次に、これまでもコミュニケーションの大切さは認識していたものの、日々の対話がチーム運営の土台であることを再確認し、メンバー一人ひとりの性格やモチベーションの源泉を理解した上で信頼関係を築く必要性を強く感じるようになりました。また、個人の成長とチームの成果を別々に捉えがちでしたが、メンバーの成長がチーム全体の成果に直結しているという因果関係にも気づきました。 方針と現状の関係は? これらの気づきを踏まえ、まずはグループミーティングやプロジェクトの進捗会議といったフォーマルな場面で、チームの動きや判断が会社全体の方針や現状とどのように関係しているかを意識的に共有していきたいと思います。 信頼感はどう築く? また、日常的な雑談や軽い声かけにも積極的に取り組み、各メンバーのモチベーションの源泉や価値観を理解する努力を続けます。その上で、一人ひとりと信頼関係を築くことを大切にしていきたいと考えています。 成長支援の視点は? さらに、日々の業務の中で「この人がさらに成長するために何が必要か」という視点を持ち続け、適切なタイミングでフィードバックを行うことで、メンバーの成長がチーム全体の成果につながるよう、納得感のある成長支援を実践していきたいです。 意識共有の方法は? 具体的には、決算発表などの節目に合わせて自身の考えや方針を言語化し、整理した上でチームと共有することを習慣化します。これにより、チーム全体として会社の方向性に沿った行動ができるよう意識づけを行います。 毎日会話の重要性は? さらに、現状、全員と毎日十分に話す機会が持てていないため、1日1回は全員と雑談も含めた会話を行うことを意識します。特に若手メンバーに対しては、メンタルケアの面も考慮して実践していきたいです。 定期振り返りは何? 最後に、チームメンバー一人ひとりの近況や変化を定期的に振り返る時間を設け、もし何も思い浮かばない場合は、日々のコミュニケーションが十分でないサインと捉え、関わり方を見直すようにしていきたいと考えています。

データ・アナリティクス入門

ビジネス分析で得た新たな気づきと学び

分析はどう進める? 演習を通じて、実際のビジネスにおける分析思考を実践することができました。目的を明確にした分析や比較対象の明示、仮説を網羅的に洗い出し、可能性の高いものを検証していくプロセスを学びました。また、数値のばらつきを意識し、代表値に惑わされず、データの適切な見せ方についても考えることができました。 割合の見方は? 実数と割合の両方を把握することの重要性を理解しました。変化が現れる割合の内訳や、それが分析に値するかどうかを見極めることが求められますが、そこに対応が不十分な点に気付きました。無視してもよい場合は早めに切り捨てることで、分析の効率化につながることを学びました。 実績はどう比べる? 実績を比較する際には、既存データの見え方に惑わされないようにし、元データをしっかり把握することが重要です。逆に社内での説明時には、平均や代表値を用いつつ、その根拠となるデータもグラフで示し、データの精度を納得させるように努めたいと思います。平均、中央値、最頻値のどれを用いるか、慎重に考える必要があります。 不要データは除く? 効率化のために、不要な情報を最初に除外する判断が求められます。データの予測精度を上げるために複数の方法を試し、正確性に欠けるものを排除することが必要です。具体的には、当年実績予測を立てる際に、どの予測方法を採用するかを検討します。いくつかの手法を出し、例年の傾向を踏まえて選ぶといった作業が重要です。 課題は何でしょう? 分析における「比較」「目的」「課題」を明確にし続けることが重要であり、学びやインプットの時間を意識的に捻出することを続けたいと思います。特にExcelの実践スキルを高めることが課題であり、データ分析の本質や考え方についての理解を深めることができましたが、実践がまだ不足しています。業務の中でも学びの時間を作り、スキルを磨いていかなければなりません。 効率はどう上げる? データ分析を行う中で、「もっと効率的に行う方法や関数があるだろう」と感じながらも、業務の中では時間がとれないことがあります。学びの時間を構築し、最初は大変でも一度挑戦することが重要です。それを繰り返すことで、最終的な作業の効率化や精度の向上につながります。 多角的視点は? 最後のライブ講義で提示されたクリティカルシンキングのポイントを忘れずに意識しておきたいと思います。多面的に考えることを意識し、様々な人と話し、インプットを続けることが大切です。

データ・アナリティクス入門

データ分析が変えるビジネスの未来

分析を成功させるためには? ライブ授業を通して、次の3点を改めて整理できました。 まず、分析は比較によって成り立つということです。目的とアウトプットを明確にしてから分析に取り組むことで、闇雲な作業を避けることができます。 問題解決のステップをどう活用する? 次に、問題解決のステップ(What-Where-Why-How)の重要性についてです。当日の演習を通じて、これを実際に活用するイメージがつかめました。各ステップでは、目的を明確にし、ロジックツリーの活用や仮説設定、データ収集方法、データの見せ方などのポイントを整理しました。 データ分析から得た新たな発見とは? 最後に、分析のステップとして、検証したいことを具体的にし、仮説を立て、何と比較するかを意識しながらデータを集め、加工してビジュアル化することで、新たな発見が得られることを再確認しました。 また、データ分析の活用については以下の3点が挙げられます。 1. 企画立案時のマーケティングプロセスにおけるデータ活用 現状では、企画立案が現場の勘や経験に偏りがちですが、データを用いることで、より良い意思決定や施策運営につなげたいと考えています。さらに、他の施策との比較や過去のデータ分析を通じて課題点を洗い出し、マーケティングプロセスを改善していきます。 2. 施策振り返り時の検証 施策を振り返る際には、実績に対する問題や課題を明確にし、次の意思決定のために仮説を立てて検証することが重要です。 3. 課題解決に向けた活用 具体的な課題が提示されたときは、問題解決のステップと仮説検証の考え方を用いて取り組んでいきます。 学習方法の見直しがもたらした効果 これらの活用方法を通じて、アウトプットを進めていきたいと考えています。 さらに、本講座の復習をしっかり行い、学んだことを言語化しアウトプットできるようにし、問題解決ステップや仮説思考、フレームワークを実務に取り入れて練習します。自然に使いこなせるようになることを目指します。また、周辺知識の学習も継続的に進めていきます。データ活用にはクリティカルシンキングや伝える力、マーケティングに関する知識が必要で、今回自分に合った学習方法が見えたのも大きな収穫です。 今年度の目標達成に向けた取り組み 今年度は、施策の乱立を防ぎ、効率的な施策運営のために可視化データを作成し、リソースを他の業務に割けるようにしていきたいと思います。そして、掲げた目標に向けて努力を続けます。

マーケティング入門

受講生が紡ぐ市場戦略のヒント

新商品の普及はどう? 新商品が普及するためには、将来のアイデアや技術と比べたときの比較優位性、生活の変化に過度に影響を与えず採用されやすい適合性、使い手にとって分かりやすく易しいわかりやすさ、実験的な使用が可能な使用可能性、そして周囲にその存在が明確に観察される可視性の5つの要因があると学びました。 新市場はどんな印象? また、新しい市場を開拓する商品については、売れるかどうかは顧客が持つイメージに大きく左右されるため、まずは顧客の声に耳を傾け、その心理を丁寧に理解することが重要であると感じました。 多様化への対応は? さらに、現在の多様化する市場環境に対応するためには、従来のマスマーケティングから脱却し、客層やニーズを絞った戦略が、より魅力的な商品創出と経営資源の効率的な活用につながると理解しました。 マーケティング戦略は? マーケティングミックスにおいては、製品戦略、価格設定、流通チャネル、そしてプロモーションの各要素が重要な役割を果たしています。製品においては、コア価値となる製品そのものだけではなく、パッケージやデザイン、アフターサービスなどの中間付随的な価値も考慮し、顧客のニーズを満たす良い製品・サービスを開発することが求められます。価格はコストや製品の価値、競合の価格を踏まえて適切に設定し、流通では販売場所やチャネルの特性、顧客の動機づけを意識する必要があります。さらに、プロモーションは製品の魅力を伝えるコミュニケーション戦略として、内容や媒体の選定が重要な課題となります。 具体例で確認する? 具体的な事例として、飲料業界において新商品の普及が難しい背景を踏まえた取り組みも印象的でした。ある自社レモン飲料では、20〜40代の幅広い層をターゲットとし、特に女性に定評のあるレモンのイメージを活かしながら、むくみ解消という具体的な課題にフォーカスして製品開発を行っています。ヘスペリジンを配合した製品は、通常品よりも若干高い価格に設定されながらも、適切な販売チャネルで提供され、ホームページや口コミを通じたプロモーション手法が効果的に機能していると感じました。 実態調査の意義は? 商品開発にあたっては、コンビニや量販店で露出されている商品の調査、食品に限らずバイヤーからの意見収集、そして流通における競合の価格設定、特売頻度、露出度、キャンペーンなどを調査することが、今後の戦略を考える上で大きなヒントになると実感しました。

データ・アナリティクス入門

仮説で拓く学びの道

分析の基本は何? 本資料は、分析を比較の視点から行い、仮説思考を持って問題に取り組むための考え方と手法を示しています。分析の要点として、プロセス、視点、アプローチの三つの軸が必要とされ、各軸が互いに補完しながら、より深い理解を促すことを意図しています。 プロセスをどう考える? プロセスでは、まず目的や問いを明確にし、その問いに対する仮説を立てます。次いで、データを収集し、分析によって仮説を検証するという流れが求められます。 視点と工夫は? 視点については、インパクト、ギャップ、トレンド、ばらつき、パターンといった観点からデータを捉え、それぞれの側面から情報を整理していきます。一方、アプローチでは、グラフ、数字、数式などを用いて、情報を視覚的かつ計量的に表現することで、理解しやすくする工夫が大切です。 可視化はどう? 比較のための可視化手法としては、データの特徴を一つの数字に集約する方法、グラフ化して目で捉える方法、そして数式に集約するアプローチがあります。これにより、データの持つ意味がより明確になります。 代表値は何? また、データを見やすくするためには、代表値と分布の確認が有効とされています。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、一方、ばらつきを見るためには標準偏差が活用されます。特に、95%のデータが含まれるという2SDルールは、分布の確認において重要な指標となります。 契約単価の意味は? 具体例として、【1】の契約単価の場面では、相加平均を用いた結果、受注率などの違いが十分に反映されず、平均値が大きく見えてしまうという事実が挙げられます。そのため、加重平均を用いることで、感覚に近い平均単価が算出できる可能性が示唆されます。 成長率はどう考える? また、【2】の成長率の場面では、合計の成長率を足して年数で割る方法が用いられていましたが、こちらは幾何平均を利用するアプローチが適切です。具体的には、(1+x)^2=◯年後の売上/スタート年の売上という考え方に基づく計算が求められます。 計算見直しは? これらの考え方を踏まえ、Q2では【1】と【2】の実際の計算を見直し、過去に作成したデータを再評価する行動を取る必要があります。また、平均値の計算方法一覧を見える場所に保存し、必要な際にすぐに確認できるようにすることで、定着した学習行動が実現されることが期待されます。

戦略思考入門

伸ばす・残す・捨てる業務判断術

業務廃止は難しい? 業務の追加は容易であっても、既存の業務を廃止するのは非常に難しいと実感しています。業務の目的や効果を再確認し、ただの惰性や習慣で行われていると判断できれば廃止は可能ですが、一定の効果が見込める業務の場合、万が一のトラブル発生時に説明できる根拠と覚悟が求められます。特にお客様対応を廃止する場合、業績低下というリスクも抱えるため、一層慎重になる必要があります。 定量基準の導入は? 今回学んだことは、「伸ばす」「残す」「捨てる」を判断する基準を、できるだけ定量的に設定する重要性です。営業活動であれば投資対効果(ROI)が評価指標となる一方、スタッフ業務においては、時間あたりのアウトプット(業務の重要度、処理量、資料作成量、効果など)に換算して判断することが望ましいと感じました。もちろん定性的な判断も必要ですが、基本的には定量的な基準をできるだけ活用し、有限なリソースから最大のアウトプットを引き出す視点が、不要な業務の廃止に繋がると考えています。 リスク軽減策は? 一方で、廃止によるリスクを最小限に抑えるためには、代替策があることや、最終的に相手にメリットがあることを十分に説明する必要があります。もし相手に直接のメリットが感じられない場合であっても、必要な時の対応策について事前にしっかりと説明し、ケアを怠らないことが重要だと思います。 保険運用を見直す? また、外貨建保険の資産運用においては、ALMの観点から各保険商品ごとに、買い入れる資産の種類や期間を設定し、保険販売に応じた資産の買い入れが行われています。現在は比較的頻繁に買い入れが実施され、丁寧な対応がなされているものの、販売量の少ない保険商品に関しては、頻繁な買い入れを行わずに集約や頻度の低減など省力化が進められていると感じます。今回の学びを活かし、さらに買い入れ頻度の引き下げや保険商品ごとの買い入れ集約を検討することが可能だと思います。その際には、買い入れを省力化する場合のリスク―例えば金利リスク量(買入金額と単位当たりの金利変動リスクの積)など―を定量的に算出し、どれだけ頻度を削減しても安全かを判断する基準を設けることが有効です。あわせて、事前に関連部署へ説明し、合意形成を図ることが重要だと考えます。 反発対応の具体例は? 最後に、業務の廃止に伴い、関連部署から反発が生じた事例について、どのように説明し対処されたのか、具体的な事例があれば教えていただけますと幸いです。

戦略思考入門

社内で即実践できるROI分析と戦略設計の秘訣

ROIの重要性とは? ROI(費用対効果)の考え方について学びました。私たちの社内では、案件ごとの稼働率をPowerBIなどを使って分析していますが、手元での試算も有効だと感じました。特に、自分の目の前の業務に活かすためには、小規模な試算も役立つと実感しました。 「捨てる」決断の基準は? 「捨てる」という決断については、客観的指標に基づいて行うことの重要性を学びました。例えば、ROIに基づく費用対効果が低い案件、取引先の成長率、取引規模、人件費などの数値データをもとに判断する必要があります。勘や経験に頼るのではなく、常に数値を基にした思考が必要だと認識しました。 なぜ本質を問い直すのか? 過去の手順や資料を無意識にコピペして使うのではなく、その本質を見つめ直すことが大切です。なぜこの手順が必要なのか、このデータは何のために用意しているのか、といった本質を問い直しながら作業を遂行することが、自身の作業効率を高め、さらに自身のROIを向上させることに繋がります。 トレードオフで優先すべきは? トレードオフの考え方についても学びました。「コスト・リーダーシップ戦略」か「差別化戦略」を重視するかの意思決定が重要です。バックオフィス業務においても、制度設計の際に費用対効果に注力すべきか、差別化戦略に注力すべきかの二つの視点を比較して戦略を考える機会があると感じました。戦略とは意思決定に基づいた行動計画を立てることですので、優先順位の設定と、個人と組織の視点をすり合わせることが重要です。最終的には、それらの最大化ポイントを見つけ、ブレークスルーとなる施策を検討していきたいと思います。 どのようにイシューを設定する? 作業を開始する前に、まずはイシューの設定を行います。過去の資料はあくまで参考にし、その時々の最適化を意識してアップデートを目指します。 数値で目的を明確にするには? 戦略を立てるためには、経営層とのディスカッションを通じて会社の意思確認を行い、目的を明確に引き出すことが必要です。客観的データに基づく情報を集め、それを元に判断を仰ぎます。感覚に頼らず、数値で具体的に意思を引き出す工夫を心がけます。 トレードオフの価値をどう探る? トレードオフの考え方は、相反する要素を並べることから生まれるのかもしれません。どんな「効用」があるのかという要素を洗い出す作業を今後も行っていきたいと思います。
AIコーチング導線バナー

「必要 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right