クリティカルシンキング入門

データで発見!POS活用の新視点

グラフ化はどう効果的? 数字をグラフ化することによって、新たな発見が得られることがあります。また、比率の計算を通じて、全体に占める割合を分かりやすく理解できます。これまであまりグラフ化を行ってこなかったので、これからは積極的に取り組んでいきたいと思います。反対に、「データを加工しないままだと、重要な点を見落とす可能性がある」ということも意識して注意を払いたいと思っています。 分解方法をどう見直す? データの分解の仕方についても、自分が考えていたもの以外にさまざまなアプローチがあることに気づかされました。「データの分け方を工夫する」という段では、二つの分け方から「大学生に集中している」という点を見落としていました。無意識のうちに「同じ年数の幅で比較する」という方法に固執していたようです。また、「分解をする際の留意点を知る」では、解釈の仕方の誤りに気がつきました。一度解釈をした後でも、もう一度立ち止まって「本当にそうか?」と再考する必要性を改めて認識しました。 分解の意義は何? 講義を通じて、「分解してみても何も見えてこないことは失敗ではない」「迷ったときはまず分解を試みる」「分けていくことが理解を深めるための手段」であるという、データを分解して解釈する際のポイントを学ぶことができました。 POSデータの活用は? 私が従事している小売業においては、業務で頻繁にPOSデータを扱います。顧客の動向を把握するために非常に有効なので、POSデータを分析するときにはこの学びを実践していきたいです。特に、グラフ化を意識して視覚的に理解することに重点を置いています。 グラフ化の効果は? 具体的には、POSデータを週ごとにExcelで表にして、グラフ化を通じて視覚的に把握します。そこから見えてきた変化をもとに、今後の方向性を決定し、業務に生かしていきます。毎週さまざまな切り口を試し、効果的な加工の方法を探っていく予定です。

クリティカルシンキング入門

データの切り口を見直して発見した新たな視点

切り口を考える意義とは? 分解する前に切り口を考えることの重要性を再認識しました。切り口を考える際には、仮説を持って臨むことが大切だということを学びました。 データ分析に仮説は必要? 今回の講義の演習には、「切り口を考える」場面が多く含まれていました。これはデータ分析を行う際、多様な視点が必要であることを示しています。そして、「切り口を考える」ためには、現時点での仮説を持つことが重要だと感じました。過去にデータを分析しようとした経験があり、当初はデータの傾向を捉えようとしていましたが、進捗が思わしくありませんでした。しかし、過去の経験から推測を立て、それに基づいてデータを精査すると傾向が見えてきました。この経験は、今回学んだ内容そのものであると改めて感じました。 正誤判断で新たな発見を? 仮説を持ち、切り口を考えてデータを見ることで、自分の仮説の正誤を判断するだけでなく、仮説が誤っていた場合でも、その仮説と実際の結果を比較検討できます。これにより、新たな解釈や仮説が生まれ、データに対する理解が深まるのです。 業務への具体的な応用は? このアプローチは、ソフトウェアの期限切れ対応のコスト分析や障害発生時のデータ分析など、直接的な業務にも応用できます。また、プロジェクト立ち上げ時には、コスト評価や対応内容の妥当性を説明する資料の作成が必要ですが、その際には票だけでなくグラフも加えて分かりやすくしたいと考えています。 仮説を立てることの効果とは? これまで、コスト分析というと、ただ数字をマトリックスやグラフにまとめるだけでしたが、それは単なる事実の整理に過ぎませんでした。今後はデータを整理・解析する前に目的を明確にし、その目的と過去の経験から仮説を立て、その仮説に応じた切り口でデータを整理していきたいと考えています。これにより、わかりやすい資料作成だけでなく、コストダウンの端緒を見つけることができるかもしれません。

データ・アナリティクス入門

データの本質を掴む!実務に活かす分析技術

分析の本質とは? この学びを通じて、分析の本質を理解することができました。分析とは「比較」することが核心であり、特に条件を整えた「Apple to Apple」の比較が重要です。まずは「何を明らかにしたいのか?」を明確にし、そのために「何と何を比較すべきか?」を定めることが大切です。 棒グラフ作成の注意点は? 印象に残った点として、棒グラフの縦軸と横軸など、細かな部分にまで注意を払ってより分かりやすく伝えることが求められるということです。例えば、縦軸は上がった・下がったを示し、横軸は要素間の比較を表現します。普段は手元のデータだけで判断してしまうことが多かったと気づかされました。この分析の本質は、課題解決のための分析決定だけでなく、解決策の実行後の効果検証にも活用できると感じました。 具体的な応用法は? 具体的な応用として、解決策の効果を比較することが挙げられます。解決策を導入する場合としない場合での比較を行い、条件をできるだけフェアに揃えることが重要です。この考え方を業務に活かすことで、顧客の課題を定量的に解決する方法を確立し、納得できる成果を提示できるようになると期待しています。 より良い分析へのプロセス この知識はすぐに実務に活用できるもので、特に分析の本質を理解できたことは大きな収穫です。今後、以下の流れを意識して分析の質を向上させていきたいと思います。 まずは課題の明確化から始め、何が課題なのかを特定し、解決するためにどのような分析が必要かを考えます。次に仮説を設定し、それを検証するためのデータを収集します。重要なのはフェアな条件で比較できるようにデータを集め、分析結果を分かりやすく可視化することです。 最後に、結果を解釈し示唆を整理します。ただ結果を提示するだけではなく、その傾向や含意をまとめ、目的に沿った分析であるかを確認します。この一連のプロセスを通じて、より質の高い分析を目指していきます。

データ・アナリティクス入門

データの見方が変わる瞬間

基本思考をどう整える? 今回の動画や演習を通して、従来は何となく基本的な見方でデータを眺めていた自分に対し、根本的な考え方の基礎を再認識することができました。表面的な比較だけでなく、意図的にデータを加工して比較することの重要性を実感しました。 数字と視覚、どっちが正しい? また、他のデータと比べる際には「数字に集約して捉える」ことや「目で見て捉える」視点が必要だと認識しました。一目で把握できる程度のデータ数であれば十分ですが、ある程度の規模がなければデータの価値は向上せず、大量のデータを扱う際には加工する手順が不可欠だと理解しました。単純に平均値を見るのではなく、値の分布やばらつきに注目することも大切です。 仮説とデータの整合は? さらに、平均値やばらつきを基に、大量のデータを加工し、ビジュアル化・グラフ化を行うことで仮説と照らし合わせ全体を俯瞰する手法の重要性を再確認しました。分析のプロセスでは、まず目的や仮説を明確にした上でデータの収集が行われ、その後、仮説の検証や分析を繰り返すことが意義のあるものだと改めて理解しました。 各種平均の使い分けは? また、データの捉え方においては、代表値としての単純平均、加重平均、幾何平均、中央値や、散らばりとしての標準偏差があり、それぞれを目的に応じて適切に使い分けることが重要であると感じました。まずは自分なりの仮説やストーリーを意識し、必要なデータを整理してから分析に取り組むことが大切です。さらに、データのビジュアル化にも注力し、目で見て整理する方法にチャレンジしていきたいと思います。 未来のデータ戦略はどう? 今後は平均値やばらつきという視点を重視しつつ、加重平均や幾何平均も意識的に活用していきたいと考えています。また、標準偏差については、効果的に使用できる場面を見極め、業務の中での活用を目指すとともに、ツールの扱いについても理解を深める必要があると感じました。

マーケティング入門

競合分析で見える自社の強みと課題解決のヒント

自社の強みをどう活用する? 何を売るかについて手当たり次第にお客様の困りごとを探すのではなく、自社の強みを活かせるものを探すことが重要だと改めて気づきました。そのためには、まず自社の強みをしっかり認識することが必要です。自社の強みは競合との比較の中で初めて明確になるため、自社の強みだけでなく競合の強みや弱みもきちんと分析する必要があると感じました。 効果的なヒアリング方法とは? また、困りごとの聞き方についても注意が必要だと再認識しました。「何か困っていることはありませんか?」という聞き方では、ほとんど情報が出てこないことを実際に経験しました。そのため、自ら仮説を立てた上でヒアリングを行うことが重要だと思いました。 産業用コネクタ開発の戦略 自社においては、新製品、具体的には産業用のコネクタの開発を検討しています。そのため、自社と競合の強みを改めて分析したいと思います。また、ヒアリングにおいては、既に一定程度認識しているお困りごとを解決できる製品コンセプトを検討し、ヒアリングシートや説明会を営業部と共有して、業界内の主要なプレーヤーへのヒアリングを実施したいと考えています。さらに、マーケターとして積極的にお客様訪問を重ね、業界のニーズや痛点の確認を進めていきたいと思います。 製品開発のための具体的ステップ 具体的なアクションプランとしては以下の通りです: 1. 現在の製品コンセプトとニーズや痛点を結びつける。 2. 技術部とコンセプトの実現に向けた事前打ち合わせを行う。 3. 実現可能性が確認できた場合、営業部と共にキープレーヤーへのヒアリングを実施する。ヒアリング時には業界の顧客ニーズを解決できる仮説を立てて行う。 4. ニーズの確認が取れたら、製品化に向けた社内検討を本格化させる。 このような取り組みを通じて、より効果的に市場のニーズに応じた製品開発を進めていきたいと思います。

データ・アナリティクス入門

仮説構築のフレームワークで実力アップ

仮説構築で何を優先すべき? 仮説構築のポイントについて学んだことは、以下の通りです。 まず、仮説構築では複数の仮説を出すことが重要です。3Cや4Pといったフレームワークを活用し、網羅性を持たせることが求められます。決め打ちにしない姿勢も大切です。 次に、仮説を絞り込むための基準としては、具体的なデータや根拠が必要です。たとえば、SNSのプロモーションが弱いと判断する場合、その根拠を明確にする必要があります。 どのデータを用いるべき? データ取得や計測前には、指標の絞り込みが重要です。何を比較すれば仮説が立証されるのかを確認します。例えば、故障件数ではなく、1件あたりの対応時間を指標とすることが有効です。 また、比較対象のデータも集める必要があります。Aが正しいというだけでなく、BやCを否定するデータも必要です。これにより、より説得力が増します。 仮説検証の鍵とは? 仮説には「結論の仮説」と「問題解決の仮説」があり、それぞれの使い分けと違いを意識することが重要です。問題解決の仮説では、社内のシステム切り替えにおいて複数の製品候補の中から1つを選ぶ際、網羅性のある原因究明と問題箇所の特定が求められます。A製品が良いというデータだけでなく、他の製品(B, C)がダメというデータも揃えることで、Aの比較優位性を証明することができます。 フレームワーク選択の重要性 仮説検証のシミュレーションでは、まず仮説の洗い出しを行います。3Cや4Pのフレームワークが適用できるかどうかを検証し、適していない場合は他のフレームワークを検討します。 最後に、データ検証の洗い出しでは、取得可能なデータの確認と、どの指標が計測・取得すべきデータなのかを特定します。これにより、仮説の検証がスムーズに進むでしょう。 以上のポイントを踏まえて、仮説構築と検証のプロセスを実践していくことが大切だと感じました。

マーケティング入門

顧客の心を掴む秘訣を探る

魅せ方はどう考える? WEEK4では、どのように魅せるかについて学びました。たとえば、ある企業は顧客のニーズに応じた商品開発を行い、新しい層にアプローチしています。しかし、顧客ニーズに合った価値を提供すれば必ず売れるかというと、そうでもありません。ある例では、冷凍食品の容器に関する顧客の要望を反映させたものでしたが、売上は伸び悩みました。その後、商品の特定の利点を強調することで、売上が劇的に増加しました。この経験から、顧客のイメージが売上に強く影響することを学びました。 導入の条件は何? イノベーションが普及するためには、いくつかの条件があります。まず、従来の技術と比べた優位性が求められます。また、ユーザーが生活を大きく変えずに導入できる適合性も重要です。さらに、使いやすさや試用できる可能性、新しい技術が簡単に観察されることも必要です。 顧客の声に注目? 顧客の声に耳を傾けることが大切で、競争に追われるあまり、顧客を見失わないように注意が必要です。具体的な行動として、ネットショッピングで売れない理由とその改善策を考えることから始めようと思います。スマートフォンを使って簡単に取り組めるため、すぐに実行可能です。 市場のニーズは? 多くの人のニーズは異なりますが、市場が小さい場合でも成長性のある市場規模を見極め、正確なニーズに応じたアプローチを心がけたいです。商品企画や市場調査では、顧客のニーズに基づいた商品開発の考え方を通じて新商品のアイデア立案に役立てることができます。商品名の立案では、他社商品との比較を行い、商品名の考案に活かせます。また、プロモーション戦略では、顧客のメリットを明確に伝える手法を策定し、競合分析では自社の強みを再確認し、戦略を見直すことが可能です。 今後の戦略は? 今後の活動を通じて、顧客の心理を深く理解し、満足度を向上させつつ市場での成長を目指していきます。

データ・アナリティクス入門

仮説とデータで描く地方創生のヒント

仮説の見方は? ビジネスにおける仮説思考について、まず複数の仮説を同時に考え、それぞれに網羅性を持たせることが重要だと学びました。仮説を検証するためには、適切なデータを取得して比較する必要があり、その際には何を比較指標とするのかを意図的に選ぶことが求められます。たとえば、残業時間の増加要因として故障対応の増加が疑われる場合、単に故障件数だけでなく、1件あたりの対応時間も合わせて評価することが必要です。 情報収集の意図は? また、データ収集では意味のある対象から意見を聴取し、反論を排除するために必要な情報まで踏み込むことが重要です。さらに、実際のビジネス現場では、3Cや4Pといった分析の枠組みを活用して具体的な仮説を立てることで、解像度が高まり、個々の仕事に対する検証マインドや説得力が向上するほか、ビジネスのスピードや行動の制度が改善されることが分かりました。 過疎地域の課題は? 一方、過疎地域への移住促進においては、雇用の創出が鍵となります。人口が5000人以下の市町村では、産業の集積が不十分なため、相応の所得を得られる雇用を生み出すには、行政が主導して仕事づくりを進める必要があります。こうした雇用創出の一策として、総務省が制度化した仕組みがありますが、現状では本県で十分な成果が上がっていません。 事業展開のヒントは? この原因を明らかにするために、どのような業務に何人派遣しているか、また仕事の切り出し方についてデータを収集し、市町村担当者と情報を共有することが今後の事業展開のヒントになると感じました。現在、管内の1市町村で既に事業が展開されており、協力体制の可能性を検討しています。また、他の市町村でも類似の事業設立が検討されているため、たとえば損益分岐点を意識した事業計画の作成方法をケーススタディとして示し、過疎地域の課題解決につなげる取り組みを進めたいと考えています。

データ・アナリティクス入門

データ分析でビジネスの謎を解く方法

売上判断で何を比較すべきか? 売上の良し悪しを判断するとき、「大きい」「小さい」「高い」「低い」などの表現を用いる場合、必ず何と比較しているかを示すことが重要です。この比較によりデータの加工を行うと、さらに新たな視点が見えてきます。 代表値とデータ分布をどう見る? まず、データの特徴を一つの数字に集約して捉えます。代表値や平均値を見るとき、その数字だけで判断せず、データの分布も合わせて考慮する必要があります。 データ視覚化の重要性は? 次に、データを視覚的に捉えることが重要です。データをグラフ化、ビジュアル化することで、データ間の関係性を視覚的に捕えることができ、特徴の把握や解釈、仮説立案が容易になります。目的に応じて適切なグラフ(円グラフやヒストグラムなど)を選ぶことで、比較・分析がしやすくなります。 数式で関係性を捉える方法は? さらに、数式を用いて関係性を捉える方法もあります。代表値として単純平均、加重平均、幾何平均、中央値、そして散らばりを示す標準偏差を利用します。単純平均だけでなく、他の代表値もしっかりと使いこなすことが求められます。 仮説検討で何を探る? これらの手法を用いて数字を算出し、比較することから仮説を立て、傾向や問題点を見つけるには、個人の経験や知識、世間の動向やトレンドを把握することが重要です。月次報告書にこれらの比較方法を取り入れ、仮説の立案までをセットにし、分析報告をまとめることが目標です。 来週火曜日の報告までにすべきことは? 来週火曜日に役員へ報告する資料が必要です。この資料は、単に実績を表としてまとめるだけでなく、そこから読み取れる傾向も分析し、上司に報告する内容にしたいと考えています。仮説については、実際の現場の責任者とも会話し、その仮説にどれほどの差異があるかを検証し、次回以降の仮説検討の際に参考にしていきます。

データ・アナリティクス入門

分析で見つけた新たな発見と気づき

比較による効果測定とは? 分析とは、比較することである。まず、分析する項目を整理し、各要素の性質や構造をはっきりさせることが重要だ。何かの効果を測りたい場合、「ある」場合と「ない」場合で比較を行い、分析対象以外の条件も整える必要がある(これは「Apple to Apple」と呼ばれる)。 データ分析の目的と仮説 データ分析を行う際には、まず目的と仮説を立てる。例えば、データ分析の目的は何で、その結果どのような状態を目指すのかを明確にすること。そして、どの項目を分析すれば目的を果たせるのか、その項目をどのようにデータ加工すれば良いのかを考え、具体的な仮説を立てることが大切だ。 適切なデータ加工と表現法 データにはその種類に応じた加工法やグラフの見せ方が必要である。割合で表現するのが適切な場合と、実数(本来の値)で表現するのが適切な場合がある。また、質的データ(数値の大小に意味がないもの)と量的データ(数値に意味があるもの)の違いを見極める必要がある。 人事部門のデータ活用法 人事部門では、健康経営やエンゲージメントに関するデータを扱い、改善に向けた施策を企画することが多い。このため、データを活用して課題解決や目標達成のためのPDCAサイクルを効果的に回せるようにすることが求められる。これまでの施策参加者がどれだけ改善したか、「参加した人の中で●●をした人はより■■だった」といった分析を行うが、このためには、参加者と不参加者の間での比較を行うことが重要だと感じている。 目的設定と議論の重要性 まずは、目的を明確にし、自分自身の思い込みや仮説に偏らず、上司やメンバーと徹底的に議論することが必要だ。次に、課題に対して目指す姿を定量的にKPIとして設定し、現状を把握する。算出するデータに定義と根拠を持ち、それを分かりやすく伝えるスキルを身に付けることも重要である。

データ・アナリティクス入門

一歩踏み出す再学習の軌跡

全体像を再確認? これまでの学習内容を振り返る中で、全体像を再確認できたと感じています。毎週の講義では、個々の演習を通じて内容を確認する機会がありましたが、連続性が不足していたため、先週と今週の学習でその点が整理された印象を受けました。また、従来のやり方や考え方にとらわれがちであることを学びの中で指摘され、再度学び直す必要性を実感しました。 特許情報の活用は? 環境分析においては、特許情報と非特許情報を組み合わせた手法のニーズが高まっていることから、今回の学習で得た知識や手法を取り入れていきたいと考えています。特に、分析は比較が前提であることや、「目的」の重要性について、チーム内での認識が揺らがないよう常に確認する点、そして仮説志向で同じパターンに偏りがないか、使用するデータが適切かを検証すること、さらにWhat-Where-When-Howの観点から確認と検証を行うことが必要です。 データ分析の課題は? これまでの業務を振り返ると、部署や立場が異なるチームでデータ分析に基づく活動を進める際、結果を重視した分析や、データから無理に仮説を導いたり、エイヤーで問題設定を行ったりしていたことに気付きました。今後は今回学習した流れをもとに、自らの手でハンドリングできるよう、実践の機会を積み重ねたいと思います。 問題解決の手順は? また、データ分析に限らず「問題解決のSTEP」を意識して業務に取り組むようになりました。分析を進める過程で、常に「目的」の認識に相違がないか確認し、スケールの大きい要求に対しては漠然とした要求を細分化し、より適切なデータ分析とアウトプットが実現できるよう努めたいと考えています。まずは、自分が担当するチームの開発テーマや製品の規模に合わせたデータ分析を実施し、その結果を第三者であるチームに説明することで、考え方や手順の定着を図っていきたいです。

戦略思考入門

VRIO分析で差別化戦略の道筋を探る

VRIO分析の意義は? 差別化戦略を考える際、VRIO分析の重要性を改めて実感しています。この分析を通じて、組織のリソースや能力を「価値があるか」「他にはない珍しさがあるか」「他が真似できないか」「それを活かす体制が整っているか」の4つの視点から評価し、強みと弱みをしっかりと理解できます。 強みをどう見極める? 特に競争の激しい分野で持続的な競争力を持つためには、自分たちの強みを明確にすることが欠かせません。例えば、スポーツチームでは同じリーグ内のチームだけでなく、他の競技やリーグとも比較して学ぶべきか悩むことがあります。視野を広げることで新たな発見やアイデアが得られる可能性はありますが、リソースが分散するリスクもあるため、分析の範囲設定が重要です。 組織強化の鍵は? 組織の強化には、VRIO分析で見つけた強みと弱みを明確にし、土台をしっかり築く必要があります。今回、自分のチームにはまだ理解が不十分な部分があることに気づき、その気づきをもとに考えを深め、チーム全員と共有することが組織全体の成長に繋がると感じました。 方向性の見直しは? 特にゼロから組織を作る場合、深掘りする方向性が正しいか確信が持てないこともあります。だからこそ、しっかり考え抜き、全員と共有するプロセスが重要です。 理想像はどう描く? また、将来的な理想のチーム像を描くことが大切です。その理想に向かい、自分たちが他のチームとどう違い、どう差別化できるかを具体的に考える必要があります。学んだ思考のナレッジを活用し、他チームとの差異や目指すべき独自の強みを深掘りしていきたいと思っています。 理想実現の共有は? 現在の自分のチームには、将来を見据えた理想とその実現のための思考が足りないと改めて実感しています。この考えをしっかりと共有し、言い続けることがチームの成長に必要だと思います。

「必要 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right