データ・アナリティクス入門

フレーム活用で広がる分析の新視点

授業で何が学べた? ライブ授業では、分析のプロセスを体系的に学びました。複数の仮説を立て、それを検証することで問題解決に取り組む手法が非常に効果的であると実感しました。また、事象を考察する際には、フレームワークの意識が基礎となる重要なスキルであることを学び、これを身につけたいと感じました。 今後の戦略は? 今後は、分析ツールを利用する際にも、フレームワークを大切にしながらアプローチしていきたいと思います。普段から現場の社員にヒアリングを行い、データの内容や背景を深く理解することで、より具体的かつ有用な分析ができるよう努めます。 成果をどう伝える? その上で、収集したデータを効果的に可視化し、社内のメンバーにわかりやすく説明できるよう、引き続き努力していきたいと考えています。

クリティカルシンキング入門

変数×層別で挑む業務の新解釈

分解の軸は正確? 業務上、さまざまな課題に取り組む際、プロセス分解を用いることが多いと感じています。実際、課題を分解するときに「いつ」「誰が」「どのように」という軸を意識して切り分けていますが、多角的な視点から分解することにはまだ慣れていないと実感しています。 切り口の工夫はどう? そのため、今後は層別分解や変数分解といった切り口も取り入れ、事象ごとに工夫して分析できるよう努めたいと考えています。これらの手法を使うことで、業務上のプロセスに対する課題解決に一層取り組んでいく所存です。 結果の正確性はどう? また、資料作成や他者への説明の際にも、層別分解や変数分解を活用し、分解した結果や解析内容が正確かどうか再確認することを心掛けたいと思います。

クリティカルシンキング入門

イシューで変わる学びのカタチ

イシューの本質は? 「イシュー」に関して、物事の状況によって何に注目すべきか、何を実現するべきかを明確化した上で、どのような取り組みを実施すればよいかを考える必要があると学びました。また、実践演習では、データに基づいて解決策を見出し、課題解決の手法を学べた点が大変勉強になりました。 地域データの真意は? また、地域ごとに家賃相場、土地の値段、利回りが異なることを実感しました。「イシュー」の考え方を軸に、担当エリアのデータ分析を行う際には、人口推移や主要な企業、学校などの情報、さらに家賃相場や土地値、利回りなどの各種データを収集しました。これにより、地域ごとの利回り感や土地相場が明確になり、エリアに合わせた効果的な営業手法の検討に活用できると感じました。

クリティカルシンキング入門

なぜなぜで本質を捉える学び

論点の見極めはどう進める? 論点を正確に見定め、その論点(Issue)を分解して分析し、打ち手を検討するプロセスを実践できたことは非常に有意義でした。最初に設定するIssueやその分解の仕方によって、得られる示唆の質が大いに変わることを実感しました。 Issue設定の意義は何か? 業務には多くの問題や課題が存在しますが、その中でも本質的で多数の課題の根源となるものを見極め、Issueとして設定する練習が必要だと感じています。設定したIssueから分解されたsub issueの中で、現実的に解決可能なものに優先順位を付け、体系的にアプローチする試みを進めたいと思います。また、正しいIssueの設定には「なぜなぜ分析」が有効な手法であると考えています。

データ・アナリティクス入門

課題解決の新たな羅針盤

プロセス分解で発見は? 課題解決のプロセス(what, where, why, how)について学ぶ中で、総合演習などであまり意識していなかったプロセス分解の手法に新たな気づきを得ました。A/Bテストに関しては、IT業界での知識はあったものの、今後は条件を整えてしっかり活用したいと考えています。 複数仮説の真価は? また、日常的に様々な判断を迫られる中ですぐに課題への対応策を考えてしまう傾向があるため、今回の研修を通じて問題や課題に対して、明確なプロセスを意識して複数の切り口からデータを分析する重要性を再認識しました。今後は、複数の仮説を検証して得られた知見を実際の管理業務に活かすことで、より効果的に課題解決へと繋げていきたいと考えています。

クリティカルシンキング入門

多角的視点で拓く課題解決

なぜ視点を広げるの? どうしても最初に目に付いた課題に意識が偏ってしまうことが自分自身の課題だと痛感しました。複数の視点から問いを掘り下げ、その中で最適な解決策を選ぶプロセスを何度も繰り返すことで、自然にその手法が身につくレベルへと高める必要があると感じています。 どうして全体をとらえる? また、私の業務では人事制度の課題を分析し、効果的な対応策を企画・実行することが求められています。これまで、分析しているつもりであっても、全体を網羅する視点が不足しており、目につきやすい課題に飛びついて対処してしまう傾向がありました。今後は、課題を細かく分解し、複数の観点から最適解を選ぶプロセスを、自然に実践できるレベルに自分を鍛えていきたいと考えています。

データ・アナリティクス入門

あなたも変われる学びの瞬間

データをどう活かす? 分析を行う際は、常に目的を意識しながらデータと向き合うことが基本です。データは単なる数字ではなく、素材と捉え、適切な調理方法や飾り付けで仕上げるように結果の表現手法を工夫する必要があります。各データの特性に合わせた分析プロセスを経ることで、他社にもわかりやすく咀嚼・理解される結果を得ることができます。 サポート状況はどう? また、作成されたサポートケース数の増減やカスタマーサーベイの結果を、製品、顧客、担当エンジニアなど複数の要素を組み合わせながら分析します。こうした取り組みによって、サポートチームが健全にオペレーションできているかを確認し、もし課題が見つかった場合には、その解決に向けた具体的なプランの策定も行います。

データ・アナリティクス入門

実践で切り拓く分析の新世界

どう問題解決する? 問題解決のためのステップと手法について学び、視野を広げるとともに、段階的なアプローチの重要性を再認識しました。分析手法を活かしながら、反復して問題に取り組むことで、着実に解決へと導けることを実感しました。 仮説はどう検証する? また、これまでの業務では、机上の分析に留まっていたと感じる部分があったため、仮説に基づいた実践的な取り組みが必要だと痛感しています。具体的には、仮説の検証や要因の洗い出しを行うために、ABテストのような活動を積極的に実施することで、分析結果を実践に反映し、さらなる理解を深めるプロセスを構築していきたいと考えています。次のステップを意識しながら、迅速な問題解決を目指して取り組んでいきます。

データ・アナリティクス入門

4P×視点で挑む企画実践

仮説構築はなぜ必要? フレームワークの学びとして、単に概念を理解するだけでなく、複数の視点からの仮説構築が重要である点が印象に残りました。特に、3Cや4Pといったフレームワークを活用しながら、問題解決の4つのステップに沿って企画を推進する手法は、今後の業務に活かしたいと感じています。 4P要素をどう捉える? 日々のコンテンツ企画業務においては、4Pの各要素を具体的に捉え、製品=コンテンツの内容、場所=コンテンツの掲載場所、プロモーション=コンテンツのデリバリーと定義することで、より広範な仮説を洗い出す取り組みが重要だと考えています。これにより、問題解決に向けたアプローチが一層明確になり、実践的な企画作成に繋がると実感しています。

データ・アナリティクス入門

問題解決に挑むロジックの魔法

基本プロセスは何? 今回の学びは、問題解決の基本プロセスを理解する良い機会となりました。特に「何が」「どこで」「なぜ」「どうする」という一連のステップが欠かせないことを改めて認識し、ロジックツリーを用いた「階層別分解」や「変数分解」の手法についても詳しく学びました。また、MECEという考え方は初めて耳にし、図解により抜け・もれ・ダブりの問題が明瞭に整理される様子から、理解が一層深まりました。 分析で気づいた点は? 実際の業務においては、退職増加に関する分析を進める中で、抜け漏れの存在に気付くことができました。限られたデータの中から問題の全体像を捉えるため、今後は抜けている部分に対して階層分析を実施する予定です。

クリティカルシンキング入門

問いと挑戦で未来を拓く

どうして自己問いを持つ? クリティカル・シンキングのフレームワークを学んだおかげで、自分自身の在り方に問いを立てることができるようになりました。それにより、今後は自ら設けた問いに対していかに近づいていくかを常に意識し、自己成長に努めていこうと考えています。 なぜ変化を追求する? 採用の仕事は常に変化と隣り合わせながら、あらゆる手法が試され尽くされているとも言われています。だからこそ、昔ながらの方法に頼るのではなく、常に新たな問いを探求し、正しい解決策を実行するための意識的な取り組みが求められると感じています。

データ・アナリティクス入門

目的と仮説で描く成功戦略

目的はどう設定? これまでの学習を振り返り、分析作業に入る前に目的と仮説を立てるプロセスがいかに重要かを再認識しました。また、問題解決に向けて「What、Where、Why、How」の4ステップに沿って進める手法が印象的でした。 業務にどう生かす? 普段の業務においても、まずは問題解決のストーリーをしっかりと組み立て、その上で分析を進めることを意識して取り組みたいと考えています。今後は、各種フレームワークを活用しながら論理的な思考力の向上に努め、より迅速に多くの施策のPDCAサイクルを回していくことを目指します。
AIコーチング導線バナー

「解決 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right